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Adrian Schembri, Keynote Speaker at Mathsport 2022

MENTAL HEALTH IN SPORTS

The psychological wellbeing and mental health of athletes presents unique challenges. Whilst
athletes often report high life satisfaction, mental health difficulties remain prevalent given the
high pressure and stressful environment that accompanies their pursuits. In this keynote talk, Dr
Schembri will present on the prevalence of mental health issues among elite athletes. Wellbeing
and mental health will be discussed from a lifespan perspective, considering challenges for
young athletes as they emerge in their sport, unique challenges during an athlete's elite career,
and risks to mental health following retirement. Provision of clinical care will be discussed. Dr
Schembri will present perspectives of both prevention and intervention with regard to athlete
mental health, including strategies for increasing mental health literacy, and identifying signs and
triggers of mental health issues.

Dr Adrian Schembri is a Clinical Psychologist and Director of Welcome to Pod, a clinical
psychology practice located in Richmond, Victoria. Adrian specialises in the treatment of adult
mental health issues, including depression, anxiety, grief and adjustment. Adrian has a specific
interest and experience working with men on their mental health, with a focus on relationship
issues, communication at home and in the workplace, work life balance, executive coaching and
supporting individuals with their navigation of complex and often overcrowded lifestyles.

Adrian completed a Doctorate in Clinical Psychology in 2010 and has since worked
clinically and in academic and corporate settings. He has published peer reviewed articles and
conference papers in the areas of clinical psychology, educational and developmental
psychology, sports psychology and neuropsychology.

Whilst working as Director of Clinical Science at Cogstate, he supported the AFL and
NRL with training club doctors on the administration and interpretation of cognitive tests used to
guide return-to-play decisions following a concussion. Within his clinical work, Adrian
frequently works with elite athletes during adolescence and early adulthood, and also supports
retired players who are struggling with their mental health.

Adrian is a member of the Australian Psychological Society (APS) College of Clinical
Psychologists and the Australian Clinical Psychology Association (ACPA).
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THE NUMBERS SUPPORTING OFFICIATING IN THE AUSTRALIAN FOOTBALL
LEAGUE
Tim Nevile has extensive experience providing matchday coaching and feedback to AFL
umpires. He has conducted initial assessment of performance to aid improvement of the national
AFL umpiring group. In Queensland he has coached, assessed and mentored field umpires in the
QAFL and QWAFL competitions. He as applied human factors theory and techniques to
investigate team cognition in emergency management teams. He has conducted research in the
use of procedures as a safety mechanism in the oil & gas industry.
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UNDERSTANDING PRESSURE METRICS AND THEIR IMPORTANCE IN
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Abstract

A team invasion sport involves a team in attack attempting to retain possession of an object leading to a score,
with the defending team tasked with stopping them by applying pressure. The concept of pressure in team invasion
sports is an important layer of detail to understanding the performance of teams, both in attack and defence.
Quantification of the pressure applied to skill execution within matches has become increasingly common in
invasion sports. This concept has been applied to professional Australian football in the form of ‘pressure acts’.
This, along with other derived statistics, are used by coaches, analysts and media to compare teams during a
match, or to contrast players over the course of a season. However, published research into the relevancy of
pressure metrics and its correlation with team success in Australian football is scarce. Due to the varying game
plans and tactics utilised by professional Australian football teams, the way in which teams apply pressure may
differ. Conversely, the performance of teams may change due to the way the opposition apply pressure. In this
study, we assess the application of pressure by professional Australian football teams based on the pressure acts
they apply when in defence, along with the pressure acts applied by their opposition. The pressure behaviour of
teams based on ladder position is compared to assess variations between the most winningest sides and the rest of
the competition. By calculating pressure points gained per minute of opposition possession, insight can be gained
as to whether winning teams apply more pressure than their opponents. The first prototype of an expected pressure
model — xPressure — is devised as a way to measure a team’s defensive pressure against what is expected based
on the actions of their opposition.

Keywords: AFL, Australian football, pressure acts, expected pressure

1. INTRODUCTION

Australian football has previously been dubbed the “most data rich sport” in the world (Watkins, 2016). This is
due to the extraordinarily large number of statistics which can be collected from one match. The publication of
basic statistic counts for Australian football can be traced back to the 1950s ("Second semi-final story in figures,"”
1953), and has continued to increase in prevalence and detail since. Statistics captured by the Australian Football
League’s official data provider (Champion Data) are extensively used by clubs, media and the general public.
This includes the official AFL Player Ratings, fantasy ranking points such as Supercoach (Edwards, 2021;
Mclntosh et al., 2018), and basic counts of kicks and handballs in order to compare players and teams.

Physical pressure in team invasion sports is a tool used to assess the performance of the attacking team
based on their reaction to the opposition’s defensive actions (Leite et al., 2014). Teams that apply more physical
pressure tend to perform better through limiting their opposition’s ability to retain possession. Studies into the
application of pressure in other sports, such as basketball (Leite et al., 2014) and association football (Cobanoglu
& Terekll, 2018) positively correlate defensive pressure with match success.

In response, Champion Data introduced ‘pressure acts’ (Watkins, 2016) — a metric designed to quantify
the level of defensive pressure applied to the ball carrier. The inception of this metric provided an additional level
of contextual detail to the data collected in Australian Football League games. For each disposal performed by a
player in a professional Australian football match, one of six levels (set, none, corralling, chasing, closing and
physical) is assigned to represent the amount of pressure applied to that disposal. Each level is pre-assigned a
numeric value known as ‘pressure points’, ranging from 0.75 points for an instance of set pressure, up to 3.75
points for physical pressure (including a tackle). This allows for derived metrics such as ‘pressure factor’ to be
calculated to represent the pressure applied by a team within a match.

Pressure acts and other pressure-related variables have been used in published research related to
Australian football (Ireland et al., 2019; Sullivan et al., 2014; Vella et al., 2021). However, research into pressure
metrics and their correlation with long-term team success has not been published. The objective of this paper is
to analyse the ways in which different professional Australian football teams pressure their opposition, and
whether differences can be observed based on single match or full season success. This provides insight as to



whether the most winningest teams pressure, or are pressured, differently than less successful teams.

An aim of this work was to create a metric known as expected pressure — xPressure. This was designed
in a similar manner as expected goals metrics in association football and ice hockey (Hamilton, 2011; Macdonald,
2012; Rathke, 2017). The purpose of such a metric is to determine the level of pressure being applied by a team
based on the actions of their opposition. The current metric used to compare the in-game pressure application of
two teams, known as the pressure factor, computes how much pressure one team is applying based on the pressure
points they accumulate during a quarter or a match. However, it does not consider the precise actions of their
opposition. For example, if one team chooses to play an uncontested style of football with a focus on marking the
ball and disposing from a set position, it does not allow much opportunity for the other team to apply high levels
of pressure on the ball carrier. In this case, a relatively low pressure factor may still be indicative of strong
defensive pressure in the situation. The adoption of an expected pressure metric would compare teams in-match
with the historical pressure efforts of other teams in similar events to determine if their pressure application is
above or below expectation.

2. METHODS

Match event data from all Australian Football League seasons from 2013 to 2019 inclusive, as collected by
Champion Data, was used in this study. Finals and pre-season matches have been excluded, leaving twenty-two
home-and-away season matches per team per season.

The data was filtered to only include events which are labelled with a pressure level. This includes
kicks, handballs, tackles, dispossessions and pressure credits. Variables were added to clarify the team applying
pressure and the team receiving pressure for each event.

The events were grouped twice based on team applying pressure, and team receiving pressure.

PROPORTION Z-TESTS - TOP 8 VS BOTTOM 10

The teams were separated based on their ladder positions at the end of the 2019 home and away season. In the
AFL, the top eight teams qualify for the final series. The instances of each of the six pressure levels, both applied
and received, were combined for the top eight and bottom ten teams. The proportions of each of the levels were
compared between-groups using proportions z-tests to assess whether there were differences in the ways finals
teams applied and received pressure compared with teams which didn’t qualify.

PRESSURE PER MINUTE OF OPPOSITION POSSESSION

For each 2019 season match, time in possession for each team was calculated by marking times in a match which
would imply taking possession (including hard and loose ball gets, intercept marks, free kicks, kick-ins and hitouts
to advantage) and times which would imply the end of a possession (including scores, free kicks against, the ball
going out of bounds and errors). Using the included time variable in seconds format, the time of each team
possession could be deduced and added to calculate how long each team had possession of the ball over the course
of the match.

The pressure points accumulated by each team were summed and used to calculate the pressure points
applied per minute of opposition possession. For example, if Team A had possession of the ball for a total of thirty
minutes, and Team B gained six hundred pressure points throughout the match, we’d say that Team B applied 20
pressure points per minute of opposition possession. From this, the individual team values from each game were
assessed, along with team averages across the season.

For each match, the difference in pressure points per minute of opposition possession between the
winning team and the losing team was calculated in search of a potential correlation between winning outcomes
and pressure application.

YEAR-TO-YEAR PRESSURE POINTS PER MINUTE

The same process of calculating pressure points per minute of opposition possession was repeated for home-and-
away season matches for each season between, and including, 2013 and 2018. Individual team values and
differences between winning and losing sides were compared across seasons using ridgeline plots to explore the
changes in mean and spread. For the differences between two sides, matches which resulted in a draw were
excluded.

EXPECTED PRESSURE

The 2019 data, including finals, was filtered to include only kicks (not grounds kicks) and handballs. Several
multi-level models were built, with the best chosen based on respective R2 and Chi-Square statistics. The models
used pressure points as the target variable, while including other relevant metrics and their interactions as
explanatory variables.



The chosen model was applied to each statistic in the 2019 data set. The expected pressure points for
each team in each match were calculated to compare how teams applied pressure compared with the expectation.
Comparisons were also made based on match result to assess whether winning teams were more likely to exceed
expectation.

3.RESULTS

The proportions of instances of applied pressure which fell under each of the six pressure levels for the eighteen
teams are displayed in Figure 1 for between-team comparison. Figure 2 shows the same data but representative of
the pressure received by each team.
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Figure 1: The proportion of each pressure level applied by AFL teams during the 2019
home-and-away season
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Figure 2: The proportion of each pressure level received by AFL teams during the 2019
home-and-away season
In 2019, St Kilda allowed their opposition the highest proportion of ‘set’ pressure (disposals taken from
a mark, set shot, kick-in or free kick). Port Adelaide allowed the least. Geelong applied the greatest proportion of
physical pressure (including tackles), with Fremantle applying the least.
West Coast were allowed the greatest proportion of set disposals, while Port Adelaide had the smallest.
Geelong received the greatest proportion of physical pressure, while West Coast received the smallest.
Figures 3 and 4 show the z-scores and 95% confidence intervals for the proportions of each level, first
applied, and then received, grouping the top 8 and bottom 10 teams respectively. For the pressure application data,
the bottom 10 teams allowed a greater proportion of instances with no pressure compared with the top 8 teams.
Top 8 teams applied a greater proportion of closing pressure than the bottom teams. No discernible difference



could be concluded for the other pressure levels.
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Figure 3: The z-scores (and 95% confidence intervals) from two proportion z-tests comparing
the proportion of instances of applied pressure for each pressure level between teams in the
top 8 and bottom 10 in 2019
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Figure 4: The z-scores (and 95% confidence intervals) from two proportion z-tests comparing
the proportion of instances of received pressure for each pressure level between teams in the
top 8 and bottom 10 in 2019

For the pressure received data, top 8 teams were allowed a greater proportion of play under set pressure.
They also received a greater proportion of pressure being chased or closed. The bottom 10 teams were allowed a
greater proportion of instances under no pressure, but also under physical pressure. No difference could be
concluded for receiving corralling pressure.

Figure 5 highlights the spread of pressure point per minute of opposition values across the 2019 home-
and-away season. The average value was approximately 21.25 pressure points. Figure 6 shows the difference in
pressure points per minute of opposition possession between the winning and losing side in each match. On
average, the winning teams recorded approximately 1.74 more pressure points than their opposition. Both metrics
follow a normal distribution.

Figures 7 and 8 repeat the analysis of pressure points per minute of opposition possession and the
difference in this metric across all seasons from 2013 to 2019. There appears to be no discernible difference in
pressure points per minute across the seasons. For the difference between teams, the values appear to be closer to
zero during the 2013 season, however the spread appears to be similar across-seasons.

Table 1 outlines the final multilevel built to represent expected pressure, along with estimates and random
effects in Figures 9 and 10.

Figures 11 and 12 give examples of the output of the expected pressure model when controlling for
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Figure 5: Density plot of all team match counts of pressure points Figure 6: Density plot of the difference in pressure points applied per
applied per minute of opposition possession time during the 2019 AFL minute of opposition possession time (winner - loser) for each match
home-and-away season during the 2019 AFL home-and-away season
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Figure 7: Density graphs of each count of pressure points per minute Figure 8: Density graphs of the difference in pressure points per

of opposition possession in AFL home-and-away matches, year-by- minute of opposition possession (winner - loser) from each AFL home-
year from 2013 to 2019 and-away match (excluding drawn matches) between 2013 and
2019, faceted by season

certain variables, along with the slight difference in output based on the team that is applying the pressure.
Figure 13 shows, for each team in each match in 2019, the difference between expected pressure and actual
pressure points (for handballs and standard kicks only). As expected, the average falls extremely close to zero due
to the model being built on this data.

For each team, the percentage of their actual pressure points when compared to expected pressure was
calculated. For example, if a team registered 550 pressure points but were expected to gain only 500, they would
register 110% of expected pressure points. Figure 14 shows the difference in this figure between the winning and
losing team in each match, followed by the two parties separated in Figures 15 and 16. On average, winning teams
performed 0.8% better than their opposition. Winning teams exceeded their expected pressure in 107 of 207
matches (51.7%), whereas losing teams did so in 96 matches (46.4%).

4. DISCUSSION
This work is the first to attempt an in-depth analysis of pressure metrics in Australian football and its correlation
with long-term team success. This paper outlines an initial overview of the data and its potential applications.
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PRESSURE POINTS

Predictors Estimates I P
(Intercept) 0.96 0.88-1.05 <0.001
disposalType [Kick] -0.18  -0.20--0.17 <0.001
clearanceTime 0.19 0.18-0.21 <0.001
[Pre-Clearance]
fieldLocation [D50] -0.03  -0.05--0.02 <0.001
fieldLocation [DM)] -0.04 -0.06--0.03 <0.001
fieldLocation [F50] 0.20 0.18-0.22 <0.001
possessionSource [Free 0.04 -004-012 0335
Kick]
possessionSource [Gather] 1.09 1.00-1.17 <0.001
possessionSource 0.89 0.81-097 <0.001
[Handball Receive]
possessionSource [Hard 1.93 1.85-2.02 <0.001
Ball Get]
possessionSource [Kick 0.03  -0.07-0.12 0577
In]
possessionSource [Kick In 044  035-052 <0.001
- Play On]
possessionSource [Loose 0.93 0.85-1.01 <0.001
Ball Get]
possessionSource [Mark] 0.07 -0.01-0.15 0.102
possessionSource [Out On 0.06 -0.03-0.15 0.196
The Full]
possessionSource [Ruck 1.28 1.19-1.38  <0.001
Hard]
startOfChain [CB] -0.03  -0.05--0.01 0.001
startOfChain [KI] -0.09 -0.11--0.06 <0.001
startOfChain [PG] -0.07  -0.08—--0.05 <0.001
startOfChain [TI] -0.04  -0.05--0.02 <0.001
disposalType [Kick] * -0.00  -0.02-002 0.997
clearanceTime
[Pre-Clearance]
disposalType [Kick] * 0.06  0.04-0.08 <0.001
fieldLocation [D50]
disposalType [Kick] * 0.04  0.02-006 <0.001
fieldLocation [DM]
disposalType [Kick] * -0.14  -0.17--0.12 <0.001
fieldLocation [F50]

Random Effects
o2 0.55
100 pressureTeam 0.00
T11 pressureTeam disposal TypeKick 0.00
P01 pressureTeam -0.58
1cc 0.00
‘\' pre%ure'[ezlm 1 8
Observations 151954

0.426/0.427

Marginal R? / Conditional R?

Table 1: The final multilevel model, predicting pressure
points on a kick or handball using 2019 AFL data

PRESSURE POINTS

disposalType [Kick] .

stanofChain [CE) .

stanofChain [PG] - .

0 1
Estimates

Figure 9: Forest plot of estimates from the chosen multilevel model

Random effects
disposalTypeKick pressureTeam (Intercept)
. .
. .
Syaney Swans - . .
StKilda- - -
Rich . .
. .
N - -
Welboume . .
Hawthom - - .
. .
. .
ng Cat . .
. .
. .
I . .
Carfton - . .
Brisbane Lions - . -
Adelaide Crows . .
05

Figure 10: Random effects from the chosen multilevel model

On first glance, the comparison of the eighteen AFL teams based on
the pressure they received and applied throughout the 2019 season
appears to have minor between-team difference. Picking out
individual teams and their usage of certain pressure levels infers
greater differences. Brisbane and Richmond applied the lowest
proportion of the ‘none’ pressure level (allowing the opposition to
dispose of the ball in open play under no immediate pressure). The
two teams finished the 2019 home-and-away season 2" and 3™,
respectively. Conversely, Melbourne and Gold Coast allowed the
greatest proportion of ‘none’ pressure and finished the season 17" and
18", respectively.

Although this can be recognised for some pressure levels, it is not
always the case. Despite finishing at opposite ends of the ladder,
Geelong (1%) and Gold Coast received a higher proportion of physical
pressure than any other teams. Differences in pressure level
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Figure 12: The difference in expected pressure between handballs and
kicks based on field location, faceted by the source of possession,
grouped by team, and controlling for source of possession (loose ball
get), time in relation to clearance (post-clearance) and how the chain
started (centre bounce).

Figure 11: The expected pressure points based on field location, faceted
by the source of possession, grouped by team, and controlling for disposal
type (handball), time in relation to clearance (post-clearance) and how
the chain started (centre bounce)

proportions, both applied and received, may not be
impacted solely by team strength but by game style.
N Some teams may invite physical pressure from their
/N opposition to free up space for their teammates
YA \ further up the field. Other teams may choose to play
: \, a kick-and-mark style, which would lead to an
increase in ‘set’ pressure received. Another variable
| \.\ which would affect this may be the field of play, as
/ 3 \ Australian football grounds at the elite level are not
all of the same dimensions. Geelong plays the
majority of its home matches at Kardinia Park, which
\ has the smallest width of any venues used for AFL
‘ \ games in 2019 (Staff writers from Fox Sports, 2018).
/ 3 Geelong received and applied a higher proportion of
/ : physical pressure than any other team in the 2019
' - season. Conversely, Fremantle and West Coast
3 recorded the lowest proportions of physical pressure
| applied and were within the bottom four for physical
pressure received. Both Fremantle and West Coast
Figure 13: The difference between expected pressure and actual pressure play their home matches at Perth Stadium, which has
points (on opposition kicks and handballs only) for all teams across all one of the largest playing areas of any regularly used
2019 matches, including finals venues. Although this remains one of several
plausible factors, future work would endeavour to
discern differences for teams who regularly play at a venue larger or smaller than normal to determine if playing

surface makes a difference in pressure application.

The z-scores and their confidence intervals in comparing the difference in pressure applied and received,
when grouping the top 8 and bottom 10, allowed for trends to be observed for teams that won the most games
during the season. Teams in the bottom 10 allowed more instances of ‘none’ pressure than the top 8. This could
be due to these teams focusing less on defending the ball carrier and choosing to stay close to other members of
the opposition team. It may also be due to to their opposition having greater skill and, as such, being able to find
more space while possessing the ball.

Top 8 teams applied more physical pressure, whilst bottom 10 teams received more physical pressure.
This aligns with the notion that pressure is correlated with team success.

Bottom 10 teams happened to receive more ‘none’ pressure than top 8 teams as well as more physical
pressure. This may be a sign of their opposition either choosing to physically pressure their opponent or, instead

o

.....

a
Difierence between xPressure and Actual Pressure Paints
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Figure 14: The spread of differences between the winning and losing
team's percentage of pressure points (kicks and handballs) compared to
expected pressure in a match

of corralling, chasing or closing, opting to defend space
further up the ground and allowing for the ball carrier to
dispose of the ball under less duress. In theory, this
could allow for the ball to arrive at a contested area
further up the field.

By calculating the difference in pressure points
per minute of opposition possession for each home-and-
away match, it appeared to be most common for the
winning side to record a higher frequency of pressure
points. Due to the way pressure points are calculated in
a discrete manner, stronger teams having more set shots
at goal, which allow for approximately 30-45 seconds
of possession time before disposal and the lowest
assignment of pressure on the disposal, may be the
cause of this outcome. Further work should search for
ways for this unopposed possession time to be
accounted for, whether by removing set pressure
instances or calculating per a set number of disposals.

The two ridgeline plots show minimal year-to-

Figure 15: The spread of winning team's percentage of pressure points
(kicks and handballs) compared to expected pressure in a match

o= 10 105
Losing Team's % of Pressure Points compared ta xPressure for Match

Figure 16: The spread of losing team's percentage of pressure points
(kicks and handballs) compared to expected pressure in a match

year difference in pressure points per minute of opposition possession, and little difference in this metric between
winning and losing sides. The between-season similarity may be indicative of ongoing changes in rules and team
game styles having minimal effect on the way teams apply defensive pressure. Data for these seasons may be
combined for future research with the assumption that defensive pressure has changed minimally season-to-

season.

The included model for calculating expected pressure is the first of its kind. The metric is able to compare
a team’s pressure performance to what should be expected in a match. A small positive correlation with winning
was noted. A model of this kind would allow for coaches and analysts to assess their team’s defensive performance
against a more relevant benchmark than a comparison between the two team’s pressure factors. An expected
pressure above a team’s true output would be indicative of the team overperforming defensively, and
underperforming if their true pressure is below expectation.

5. LIMITATIONS

The nature of this research and its novelty has with it several limitations. Although moments of set play can result
in differing outcomes, due to players only having a short amount of time to dispose of the ball from a free kick,
mark or kick-in, the majority of these instances result in ‘set’ pressure. This could skew the data and impact the
results of differences amongst other pressure levels. Future work should seek to separate set pressure from other
instances, whether by removing marks, free kicks and kick-ins, or accounting for the time taken between

possession and disposal.
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The inclusion of pressure attained from tackles and other unique moments of play such as ground kicks
could have drawbacks for calculating pressure points per minute of opposition possession, as many tackles would
occur without the other team “gaining” possession of the ball. Removing these instances when calculating the
metric may provide alternative results.

As the model was built using data from the 2019 season and tested on the same input, there is no proof
that this model would remain relevant when applied on other matches. Further work will replicate the same process
using a larger sample of matches before testing with more recent, unseen contests. The current model is also
limited to kicks and handballs, with other instances of pressure such as disposal-less tackles and pressure credits
excluded. Future models should aim to include these moments of pressure to give a true account of a team’s
defensive performance. Moments of set pressure, such as disposals from marks, kick-ins and 50m penalties need
to also be accounted as higher pressure levels, though unlikely, are possible. Some disposals also yield an expected
pressure less than 0.75, which is the lowest possible pressure points attainable. This should be controlled in future
models. Once these changes are made, the final product will provide a new tool to analyse a team’s defensive
pressure during and after a game and in the long term.
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DETERMINANTS OF SHOT AT GOAL ACCURACY IN AUSTRALIAN
FOOTBALL AND OPTIMISING IT’S AFFECT ON MATCH OUTCOME
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Abstract

Factors that affect shot at goal accuracy in AF have been explored previously, which include shot location, shot
type and stadium design (Bedford & Schembri 2006). More recently, additional factors were identified such as
playing position and weather, but not the experience of the player (Anderson et al., 2018). Furthermore, Browne
et al. (2022) reinforced the importance of shot location and added the effect of pressure on the accuracy of shots
in open play. The present study explored whether a single variable (arc angle) that represents the shot location,
provides a more useful predictor of the likelihood of a goal. In addition, we aimed to explore whether it is more
important to maximise the number of shots at goal, or the probability that shots will result in a goal. 32,694 shots
at goal were analysed from 1260 team performances in three seasons (2017-2019) of the Australian Football
League. The most important determinant of match outcome is the number of shots at goal, although there was a
cohort (~14%) that won, without having more shots at goal. This cohort managed to win by having a higher shot
at goal accuracy, which was achieved in large part by taking fewer shots at goal, from field locations that had a
higher probability of scoring a goal. The probability of scoring a goal can be predicted using shot arc angle (61-
65.8% classification accuracy), instead of the combination of shot angle and distance (60%). These results
demonstrate that there is an interplay between the total number shots per match and the probability that those
shots will result in a goal. All teams should consider this aspect of their performance as it relates to their match
strategy and because points scored for and against them, may affect their final position on the league ladder.

Keywords: Technical performance, tactical performance, expected goal
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Abstract

AFL football is a physically vigorous sport where opposing players aim to outscore their opponent. Successful
teams are often tactically and physically superior to their opponents, which makes it important for further
analysis into how these athletes dynamically move during a game. With that, Sequential Movement Patterns
can be identified and quantified using a clustering technique to explore how players predominantly move in
play. Sequential Movement Patterns (SMP) are running metrics extracted from GPS (Global Positioning
Systems) data to show the way in which players move during play. The advantage of utilising SMP to explore
common movement patterns, is to associate these to specific player positions and demands. Usually,
spatiotemporal data is used to identify threshold running zones which at times can be quite a subjective value.
An alternative approach to this is to use a clustering technique on the collected spatiotemporal data (X, Y
coordinates) to identify movements that are like each other in nature. This is a novel approach which has not
yet been explored in the AFL. Therefore, the aim of this study us to identify and explore the differences in
Sequential Movement Patterns among the distinct positions in the AFL. This can be beneficial for coaches and
Sport Science staff to identify differing running patterns amongst positions within a team and adjust their
running demands accordingly in training.

Keywords: AFL, GPS, Movement Patterns
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Abstract

The traditional approach to modelling the accuracy of player actions across various sports has been to use a
binomial (score/miss) outcome conditioned on various inputs related to the context of the action. Here we
introduce a novel approach to assessing accuracy of set shots at goal in Australian Football, where the player
can take the shot without intervention from defensive players. With official data from the 2014-2021 seasons
nearly 35,000 set shots are included in the study, tagged with X,Y coordinates for the location of the shot and a
seven-option multinomial output (goal, behind left/right, post left/right, out on the full left/right). For each shot,
the location of the four goal posts is converted to the angular domain as degrees left or right of the centre of the
goal line, and the angular dispersion is sampled from a uniform distribution in the possible outcome space given
by the previously mentioned multinomial output. Distributions of angular dispersion are then derived for
individual players to assess the reliability of their goal-kicking, and to establish expected results from set shots
at goal as probabilistic outcomes. A further extension was applied to the assessment of decision-making related
to snapped shots at goal to determine locations on the ground where this may be more accurate than a traditional
drop-punt.

Keywords: Accuracy, Simulation, Australian Football, Expectation
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Abstract

Markov Models are used in game theory to describe the evolution of the play through well-defined memoryless
states. Scores and results can be encoded as absorbing states of the model, with Markov matrix operations
enabling evaluation of all states’ transition probabilities and their likelihood to end in a certain score. The on-
field possession states have been modelled in several sports as a Markov or semi-Markov model, starting with
Romer’s (2002) dynamic programming approach in American Football.

More complex sports such as Australian Rules football (Meyer, Forbes & Clarke, 2006), ice hockey (Thomas,
2006) and soccer (Rudd, 2011) have employed these methods, based on notational analysis of events in the
game. This paper uses (X,Y) event and descriptive data from Champion Data, combined with club-specific
annotations that describe common scenarios in the game.

The Markov states in the model correspond to well-described events, such as shots at goal, stoppages, and
turnovers. Additional state parameters include the position relative to goal, the relative position of the defensive
team (“the bubble”) and the pressure on the ball carrier. Adjunct states are built, corresponding to coaching
scenarios such as “slow play coming out of defence”. These are defined using coaches’ descriptions, and they
do not appear in the Markov matrix per se. Where there are multiple choices from the scenario (e.g. switch the
play vs kick for distance), each choice is represented as a vector of outcome states, derived empirically.

When evaluating a game, the actual outcomes from these choices are compared with the historical average, in
terms of metres gained, percentage turned over, and field equity (O’Shaughnessy, 2006) of the subsequent states.

Keywords: Australian Rules Football, Strategic Evaluation, Coaching, Markov Model, Dynamic
Programming, Markov Decision Process

Acknowledgements
The authors wish to thank the coaches at St Kilda Football Club for defining the scenarios used in this research.
References

Jackson, K. (2016). Assessing Player Performance in Australian Football using Spatial Data. PhD Thesis, Swinburne
University of Technology.

Meyer, D., Forbes, D.G., Clarke, S.R. (2006). Statistical Analysis of Notational AFL Data using Continuous Time Markov
Chains. Proceedings of the 8" Australasian Conference on Mathematics and Computers in Sport, Gold Coast, 81-90.

O’Shaughnessy, D.M. (2006). Possession Versus Position: Strategic Evaluation in AFL. Proceedings of the 8" Australasian
Conference on Mathematics and Computers in Sport, Gold Coast, 226-238.

Romer, D. (2002). It’s Fourth Down and what does the Bellman Equation say? A Dynamic-Programming Analysis of
Football Strategy. National Bureau of Economic Research, Working Paper 9024.

Rudd, S. (2011). A Framework for Tactical Analysis and Individual Offensive Production Assessment in Soccer Using
Markov Chains. New England Symposium on Statistics in Sports, Harvard University.

Thomas, A.C. (2006). The Impact of Puck Possession and Location on Ice Hockey Strategy. Journal of Quantitative Analysis
in Sports, 2, Article 6.

Submitted to MATHSPORT 2022 March 30, 2022

19



ASSOCIATIONS BETWEEN THE TIMING OF PLAYER CONTRACT
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Abstract

An integral incentive for an athlete in any team sport is the status of their contract. Despite multiple studies
assessing the relationship of player performance on player value in the team sport notational literature, there is
limited knowledge on the relationship between a player’s contract status and individual player performance.
This research analysed the extent to which player performance, defined as Australian Football League (AFL)
Player Ratings, differs dependent on the status of a player’s contract in the AFL. A measure of ‘expected
performance’ was modelled allowing for an exploration into the differential with actual performance as a
function of contract status. The results indicated that players who signed mid-season and were out-of-contract
at the end of that season showed substantial differences between performance in the matches prior to and post
signing. Furthermore, athletes who have more consistent performances (lower relative standard deviation) are
less likely to see a reduction in performance post signing, as compared to more inconsistent performers. The
findings and applications outlined in this research provide an explanation of the association between player
performance with respect to the timing of player contract signings and could be used as an example of
associations worth investigating to identify refined indicators of expected performance for matches post the
signing of an AFL contract.

Keywords: decision support, performance analysis, data visualisation, player evaluation, team sport
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Abstract

Australians have been bodysurfing for more than 120 years, and the Polynesians even longer. The early history
of this sport is considered, followed by the mathematical and physical aspects of catching and riding ocean
waves that break near the shore. Some comments on the difficulties of fluid dynamical research into bodysurfing
involving drag, buoyancy, gravity and forward propulsion are considered. Finally, there is an awareness of the
dangers and fun associated with this sport, which are covered in more detail in my book Bodysurfing, published
in 2009, the only Australian book on the subject.
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Abstract

Advancements in machine vision have enabled this technology to become a viable alternative to GPS data for
tracking player movement (McDonald et. al., 2020; Trowland et. al., 2020). Fixed camera footage is readily
available on the internet, including those posted from national governing bodies, such as NZ Cricket
(www.nzc.nz). The three-stage approach outlined by McDonald et. al. (2020) is used to convert raw match
footage into a set of xy coordinates per player per frame. Here, we convert footage of two batters running
between the wickets in a New Zealand First Class game played late in the 2020-21 season into machine readable
data for further analysis.

We show the running paths of the two batters. In addition, we also show the acceleration and speed of the
dismissed batter per frame, which can be used to infer timeliness of decision-making. In this real-world scenario,
it took 78 Frames for the ball to come in from the field after leaving the bat (3.12 seconds). This required the
dismissed batsmen to run at 20.4kph, the equivalent of running 100m in 17.65 seconds. Further assessment of
the frame-by-frame data indicates the dismissed batter delayed his decision to run after first making a move to
run by 9 frames (run out by 7 frames). In addition, this batter had a curved run, running an extra 15% to his
running distance. This technology becomes potent for effective coaching of running between wickets.
Keywords: Machine Vision, Scouting, Acceleration

1. INTRODUCTION

Cricket continues to evolve as a game (Noorbhai et. al., (2015). Driven by spectator appeal, increased
professionalism and athleticism, cricket has adapted to capture and retain both players and fans alike. Shortened
formats of the game (T20 and The Hundred) create an approximately three-hour version of the game. The
introduction of age and stage to retain junior cricketers also shows a willingness to adapt (Renshaw, 2017).
Coaching and umpiring aids also continue to embrace emerging technology.

Shaheen (2021) outlined the technology used within game as part of the Decision Review System (DRS).
This technology ranges from: Hawk-eye (ball tracking), Hotspot (detecting heat from contact between bat and
ball), Snicko (profiling sound waves). These cover the use of ball tracking, imaging, and profiling sound. There
are other implementations which are of interest. Chowdhury (2016) explored the use of machine vision to detect front
foot no-balls. Bracewell et. al. (2020) showed how bowling speeds could be estimated from historical footage. Pai (2020)
provided a tutorial for ball tracking using Python which is the extra detail required to implement what Bracewell
et. al (2020) outlined.

Moodley et. al. (2022) state that there have been limited studies demonstrating the validation of batting
techniques in cricket using machine learning. They showed how the batting back lift technique in cricket can be
automatically recognised in video footage. Other approaches are outlined for cricket and other sports relating
to movement and technique. As the cost of computing power decreases, the ability to process this type of footage
becomes increasingly accessible. For example: Bracewell et. al. (2022) tracked the centre of play in rugby union;
Bakhai (2020) outlined the use of machine vision in baseball; Faulkner et. al. (2015) investigated player detection
for use in Australian Rules). New approaches and use cases will continue to emerge, driven by blogs and
tutorials like Pai (2020) across multiple sports.

Here we take a different approach and assess the decision-making process of a batter. This is achieved by
showing the running path. Importantly, we also show the change in speed which can be used to infer timeliness
of decision-making.

2. METHODS

DATA

Using accessible footage available online we explore a run out to show how machine vision works within a
cricket setting (https://www.nzc.nz/domestic/competition-centres/plunket-shield). Usefully, the footage from
this site is a single fixed camera per game which makes the process of converting the human detections to a top-
down view via a homographic transformation much simpler. This process is explained by McDonald et. al.,
(2020). Given cricket pitches are standardised, approximations of distance are readily obtained. To complete
a run, batters move the running crease, also referred to as the non-strikers popping crease and the popping crease,
which is 17.68m. This is shown in Figure 1.
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Figure 1: Stylised diagram showing the dimensions of a cricket pitch produced by the Government of Western
Australia (2019).
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Figure 2: Accessing publicly available footage to assess Player Movement.

From the NZC website, we selected one run out for review. This is the clip third from left in the bottom
row of Figure 2. This clip is titled “HR Cooper run out (NF Kelly)” and is from the Otago Volts vs Northern
Districts Round 8 game of the 2020/21 Plunket Shield (New Zealand domestic first-class cricket).

From match footage, players are detected in each frame. Also, key features, such as crease, wickets and
marking for danger zone are identified to help work out where a player is relative to the pitch. This aids in the
homography and conversion to the top-down view.
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Figure 2: Mosaic showing key moments in HR Cooper’s run out effected by NF Kelly in the Round 8 Plunket
Shield match played between Otago and Northern Districts in the 2020/21 season.

In the top left, the image shows the point of release for the bowler at frame 132. The top right image is the
same frame, but with human detections. Bottom right-hand image is frame 145 (revealing the ball was travelling
at 122kph) which shows when the ball was stuck. The fourth and final image in the bottom left shows frame

223 which is when the bail first lifts after the wickets have been struck. In this final image, Cooper is short of
his ground.

Figure 3. Paths of all detected humans from the clip for HR Cooper’s dismissal
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The player detections from Figure 2 are then converted into a top-down view as shown in Figure 3. The
darker dots are the start of the detected human’s movement, and the lighter dots are movements toward the end
of the clip. The fielders and bowlers are seen which provides an additional perspective on fielding movement.

3. RESULTS

Understanding how people move allows insights to be extracted. It took 78 Frames for the ball to come in from
the field (frame 223) after leaving the bat (frame 145) (3.12 seconds). This required Cooper to run at 20.4kph,
the equivalent of running 100m in 17.65 seconds. For a first-class athlete, this is achievable.
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Figure 4: Running paths of Cooper (Blue dots, non-striker, starts at top of graph and top of image from frame
145 and Raval (Orange dots, striker, starts at bottom of graph and bottom of image from frame 145)
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The distance travelled by each batter is calculated as the sum of the Euclidean distance between the X,y,
coordinates for consecutive frames between frames 145 and 223. A feature of Cooper’s path, shown as the blue
dots in Figure 4, is the curve. The estimated total distance he ran was 20.32 metres, which is 15% more than
necessary to cover the 17.68m between the popping and running creases. In further investigations we will
explore the application of smoothing to remove some of the jitter.

Speed Index
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Figure 5: Speed Index per frame for the first 50 frames for Cooper’s movement from when the ball is struck

Looking at the first two seconds of footage, we see Cooper does not react until after nearly 1 second (about 20
frames [1]). We can see the spike after approximately 30 frames [2] where he begins to run and hit top speed
(after 27 frames), he then stalls and does not commence running again until 36™ Frame [3]. Cooper was run out
by 7 frames. Between the 27" and 36™ frame Cooper “lost” 9 frames through indecision [4](0.36 of a second).

The profile in figure is based on the movement between pixels, so we refer to this as a speed index. The
important elements to derive from the graph below are the stillness, up to frame 20 and then the relative start-
stop-start movement that is evident from about the 20" frame.

3. DISCUSSION

The use of machine vision enables new data sources to be captured. Here, we have been able to assess how
Northern Districts batter, HR Cooper moved while attempting a single run. Two features stand out. Firstly, the
arc of Copper’s running path added an extra 15% of running distance. Cooper delayed his decision to run after
first making a move to run by 9 frames (run out by 7 frames).

The impact of those elements becomes important when considering the outcome. Had he run straight, this
would have seen him complete the run in 13 fewer frames. This is estimated by assuming a constant speed across
the 85 frames that it took Cooper to slide his bat across the line (frame 230). A 15% reduction is relative to 13
fewer frames (he was run out by 7 frames).

If Cooper had either run straight or committed early, he would have successfully completed the run
successfully, despite the direct hit from NF Kelly.

4. CONCLUSION

Machine vision has increasing applications in cricket. These applications are beyond decisioning and
entertainment. Here, we showed by tracking an individual, we were able to assess different elements of the run:
namely the directionality of his path and the point at which he made a clear decision to attempt the run. Both
features are useful for training and coaching purposes at all levels. Importantly, this is achieved from a fixed
camera. This makes this type of approach accessible to coaches of all ages, particularly as Trowland et. al. (2022)
showed that tracking could be undertaken from an iPhone. Extending beyond a single case to process many
“runs” would help further insights into batter behaviour. Of particular interest is the reaction time and how quick
a batter responds to a call or cue from their batting partner. Combing this type of processing to include fielding
expands the capability to interrogate the viability of a run and evaluate the level of risk a batter is willing to
assume, relative to the match context.
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Abstract

In Twenty20 cricket, there is a trade-off relationship between batting average and strike rate as well as bowling
strike rate, economy, and average. This study presents Pareto frontiers as a tool to identify athletes who possess
an optimal ranking when considering multiple metrics simultaneously. 884 matches of Twenty20 cricket from
the Indian Premier League were compiled to determine the best batting and bowling performances, both within
a single innings and across each player’s career. Pareto frontiers identified nine optimal batting innings and six
batting careers. Pareto frontiers also identified three optimal bowling and five optimal bowling careers. Each
frontier identified players that were not the highest ranked athlete in any metric when analysed univariately.
Pareto frontiers can be used when assessing talent across multiple metrics, especially when these metrics may
be conflicting or uncorrelated. Pareto frontiers can identify athletes that may not have the highest ranking on a
given metric but have an optimal balance across multiple metrics that are associated with success in a given
sport.

Keywords: cricket; visualisation; talent identification; optimal selection

1. INTRODUCTION

The need to identify attributes to quantify optimal performance is evident for every sport (1). With the exception
of a few single-skill sports (2), most athletes require a number of attributes to perform in their given sport. These
attributes can encompass physical (3), physiological (4), mental (5), or skill-based characteristics (6), that all
can contribute to the performance of a player. Attributes such as speed, endurance, agility, strength, power, and
accuracy are common across multiple sports (6), and each attribute can have multiple variables seeking to
quantify that attribute. As such, coaches and support staff are consistently looking for new variables that could
be used to either quantify new attributes of interest or develop more variables to better quantify already-identified
attributes with the hope that these new variables can identify previously-hidden talent or interrogate subtle
differences between different athletes. However, with the increase in the number of attributes of interest, the
likelihood that an athlete excels in every attribute decreases. Consequently, methods are required that can analyse
multiple attributes simultaneously, rather than viewing each attribute in isolation.

While traditional research statistical techniques focus around identifying the mean and standard deviation of a
population (7), sports typically are not interested in the mean during talent identification processes, rather, they
are looking for outliers. That is, coaches and support staff are looking for athletes that sit the furthest away from
the mean in the direction that success is defined. Therefore, when multiple attributes are of interest, selection of
athletes is by choosing athletes that sit the further away from the mean within each attribute. While this process
can work when variables are positively correlated, this process can miss talent when variables are negatively
correlated. For instance, at the elite level, there is a negative correlation between maximal sprint speed and
endurance capacity (8). However, running-based team sports require athletes possess both speed and endurance
to play at the elite level and, therefore, players necessarily need to trade off between having optimal speed and
optimal endurance. In its simplicity, if both speed and endurance were equally required for success, selecting
the top-n sprinters and the top-n endurance runners may not be the optimal athletes for that sport.

Consequently, both attributes need to be viewed in tandem. The process of optimising the balance of multiple
attributes is termed ‘multi-objective optimisation’. Mathematically, they aim to create the perfect balance of the
attributes of interest. If a data point was defined as: ¥, € X, it is, therefore, better than another data point defined
by: %, e X if fi(%;) < fi(X,) for all metrics ie{1,2,..,k} and f;(X;) < f;(X,) for at least one metric
j €{1,2, ..., k}. Once these conditions have been met, the remaining points are deemed Pareto-optimal and form
what is called the Pareto frontier.

In Twenty20 cricket, there are multiple facets within both batting and bowling that can define success. Unlike
Test cricket and, to an extent, One-Day cricket where scoring as many runs as possible regardless of how many
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deliveries faced is of most importance, Twenty20 crickets requires batters to score faster (i.e., higher strike rate)
and for bowlers to concede minimal runs which, in some cases, can come at the expense of preserving their
wicket. Therefore, there is a trade-off relationship between batting average and strike rate as well as bowling
economy, average, and strike rate within Twenty20 cricket. For example, early on in an innings the risk-return
of attempting to hit six runs off a ball is significantly different than in the final over of an innings. Similarly, a
bowler needs to balance taking wickets while also conceding as few runs as possible. For instance, when bowling
four overs, it is again difficult to determine whether taking three wickets for 50 runs is of more worth than taking
no wickets but only conceding eight runs as the three wickets may not have been worth conceding 50 runs. As
both attributes within each domain are of interest, Pareto frontiers can be used to determine batters and bowlers
that may not record the highest in either variable but display an optimal balance of the two attributes. Therefore,
when assessing the quality of players, it is necessary to utilise tools that can analyse these datasets without
favouring one metric over another. Therefore, the present study aimed to use Pareto frontiers to identify the best
performing Twenty20 batters and bowlers.

2. METHODS

The present study comprised all 884 matches of the first 14 editions of the men’s Indian Premier League (IPL),
India’s domestic T20 cricket competition. The dataset contained 566 batters and 467 bowlers. Collectively,
there were 13,357 individual batting innings with observations ranging from 1-208 innings per batter, while
there were 10,925 individual bowling innings with observations ranging from 1-180 innings per bowler.

To summarise the data, two summary statistics were generated for batting and three summary statistics were
generated for bowling. The summary statistics were as follows:

e Batting Average: runs scored divided by frequency of dismissal

e Batting Strike Rate: runs scored divided by balls faced

o Bowling Average: wickets taken divided by runs conceded

e Bowling Strike Rate: wickets taken divided by balls bowled

e Bowling Economy: runs conceded divided by overs (i.e., 6 balls) bowled

To understand both the batting and bowling attributes within cricket, four Pareto frontiers for were established
within the dataset:

i Pareto-optimal Batting Innings
This analysis outlined the highest runs scored within an innings at the highest strike rate.

ii. Pareto-optimal Batting Career
This analysis outlined the highest batting average across a career at the highest strike rate. To provide
a more accurate career report, batters required to have played a minimum of 20 innings which left 163
eligible batters.

iii. Pareto-optimal Bowling Innings
This analysis outlined the most wickets taken in an innings at the lowest economy.

iv. Pareto-optimal Bowling Career
This analysis outlined the lowest bowling average across a career at the lowest economy and lowest
strike rate. To provide a more accurate career report, bowlers required to have bowled in more than 20
matches, which left 145 eligible bowlers.

The rPref package (9) was used in R v 4.1.0 (10) to determine the Pareto frontiers using the psel function with
the ‘top_level” argument set to 999 to ensure every athlete was assigned to a frontier.
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3. RESULTS

Pareto-optimal Batting Innings

Nine Pareto-optimal innings were identified with extremities ranging from 6 runs off 1 ball (i.e., strike rate =
600) to 175 off 66 balls (i.e., strike rate = 265.15). Additionally, the solution of 6 runs off 1 ball has been attained
eight times. The IPL batting innings Pareto frontier is displayed in Figure 1 and the batters are listed in Table 1.
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Figure 1. Pareto-optimal batting within an IPL innings. N.B. For illustrative purposes, points were filtered out i
if both their runs scored was below 50 and their strike rate was below 100.

Table 1. List of all Pareto-optimal IPL batting innings

Batter R (B) Strike Rate Match

Chris Gayle 175 (66) 265.15 IPLO6 Match 31
David Miller 101 (38) 265.78 IPLO6 Match 51
Yusuf Pathan 100 (37) 270.27 IPLO3 Match 2
Suresh Raina 87 (25) 348.00 IPLO7 Match 59
Andre Russell 48 (13) 369.23 IPL12 Match 17

AB de Villiers 41 (11) 372.72 IPLO8 Match 16
Chris Morris 38 (9) 422.22 IPL10 Match 9
Krunal Pandya 20 (4) 500.00 IPL13 Match 17
Numerous 6 (1) 600.00 IPLO4 Match 74 1stoccurrence
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Pareto-optimal Batting Career

Six Pareto-optimal batting careers innings were identified. Andre Russell recorded the highest career batting
strike rate with 178.57 runs per 100 balls, while KL Rahul recorded the highest batting average with 47.43 runs
per dismissal. The IPL batting career Pareto frontier is displayed in Figure 2 and the batters are listed in Table
2.
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Figure 2. Pareto-optimal batting within across an IPL career. N.B. For illustrative purposes, points were filtered
out if both their average was below 20 and their strike rate was below 100.

Table 2. List of all Pareto-optimal IPL batting careers

Batter Innings Average Strike Rate
KL Rahul 85 47.43 136.38
David Warner 150 41.60 139.97
Jonny Bairstow 28 41.52 142.19
Chris Gayle 141 39.72 148.96
AB de Villiers 170 39.71 151.69
Andre Russell 70 29.31 178.57
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Pareto-optimal Bowling Innings
Three Pareto-optimal bowling innings were identified: 2/0 by Suresh Raina, 5/5 by Anil Kumble, and 6/12

achieved by Alzarri Joseph. The IPL bowling innings Pareto frontier is displayed in Figure 3 and the bowlers
are listed in Table 3.
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Figure 3. Pareto-optimal bowling within an IPL innings.

Table 3. List of all Pareto-optimal IPL bowling innings
Batsman Overs Wickets Runs Match
Suresh Raina 0.3 2 0 IPLO4 Match 52
Anil Kumble 3.1 5 5 IPLO2 Match 2
Alzarri Joseph 34 6 12 IPL12 Match 19
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Pareto-optimal Bowling Career

Five Pareto-optimal bowling careers were identified, with Doug Bollinger achieving the lowest average, Rashid
Khan achieving the lowest economy, while Kagiso Rabada recorded the lowest strike rate. The IPL bowling
career Pareto frontier is displayed in Figure 4 and the bowlers are listed in Table 4.
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Figure 4. Pareto-optimal bowling across an IPL career.

Table 4. List of all Pareto-optimal IPL bowling careers
Batsman Innings Average Economy Strike Rate
Doug Bollinger 27 18.73 7.22 15.57
Kagiso Rabada 59 19.71 8.22 14.39
Lasith Malinga 122 19.79 7.14 16.63
Jofra Archer 35 21.33 7.13 17.93
Rashid Khan 86 21.46 6.40 20.12
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4. DISCUSSION

This study sought to use Pareto frontiers to visualise optimal Twenty20 cricket batting and bowling
performances, both within an innings as well as across a career. By analysing performance multivariately, rather
than simply analysing multiple variables univariately, players can be deemed optimal despite not being
objectively highest in a single variable. When conflicting attributes are of equal interest, Pareto frontiers can
view these variables in tandem as the expectations of an individual to attain the highest level in both attributes
univariately may be unfeasible. All four Pareto frontiers contained at least one athlete that was not the highest
ranked athlete in any metric when analysed univariately, and yet was deemed Pareto-optimal due to their balance
in the metrics of interest.

The main advantage of Pareto frontiers highlighted in the present study is identifying athletes who are optimal
across multiple metrics even when they are not the highest ranked in any metric. This was most evident where
Chris Gayle, when viewed univariately, has the 9th-highest career batting average (39.72), which is 6.71 runs
per innings lower than the highest (Figure 2). Similarly, he has the 14th-highest strike rate, striking at 148.96
which is 29.61 runs per 100 balls lower than the highest. However, when considering both metrics
simultaneously and visualising these metrics, he is one of the best batsmen across the 14 seasons of the IPL.

The present study also illustrated how Pareto frontiers can be used to visualise talent in more than 2 dimensions.
For example, while Jofra Archer has the sixth-lowest bowling average, 14th-lowest economy, and the 19th-
lowest strike rate (see Figure 4), he can be deemed a Pareto-optimal bowler as there are no other bowlers who
supersede him across all three metrics. While there will be some correlations between the three bowling metrics
(i.e., average, economy, and strike rate) as the metrics are related (e.g., wickets taken is the denominator of
average and numerator of strike rate), visualising the third dimension is still necessary as the reader would still
need to multiply the x and y values to understand where they would sit in the third dimension.

In the present study we chose to observe batting and bowling as purely independent roles within cricket;
however, there are also avenues for Pareto frontiers to be established for all-rounders within cricket (i.e., players
that are picked for both their batting and bowling ability). However, it should be noted that if an all-rounder
Pareto frontier were to be established with both batting average and strike rate as well as bowling average,
economy, and strike rate, the resulting five-dimensional outputs, while valid and executable, become
increasingly difficult to interpret and visualise. To do such an analysis, a factor-reduction technique such as
principal components analysis should be considered and the Pareto frontier could be built from the extracted
components (e.g., batting and bowling).

While the present study is designed to be an introduction for sports scientists to the concept of Pareto frontiers,
it should also be considered that there is some level of uncertainty surrounding each observation in the career
Pareto frontiers due to the differing number of observations. For example, Jonny Bairstow is deemed Pareto-
optimal as he is currently striking at 142.19 at an average of 41.52 after 28 innings; however, it is right to assume
that it is more uncertain that he lies on the frontier than AB de Villiers who has 170 observations. Therefore,
future research could consider providing confidence or credible intervals around the probability that an
individual lies on the Pareto frontier. Consequently, it is then feasible that a probability that an individual sits on
the first, second, or third frontier could be calculated.

While the present study used Twenty20 cricket to illustrate the power and usefulness of Pareto frontiers, the
concept can be widely applied within sports science datasets, especially when the variables of interest are
uncorrelated or negatively correlated. Pareto frontiers can still be established between two positively correlated
metrics; however, it is likely that there will be less ‘hidden’ athletes on this frontier as naturally the athletes who
are high in one metric will be high in the other metric. Future research should apply Pareto frontiers across
different avenues within sports performance analysis which have multi-faceted determinants as there are many
other possibilities within sports whereby Pareto frontiers can reveal athletes who possess the optimal balance of
the metrics of interest.

5. CONCLUSIONS

With the proliferation of various physiological, mechanical, and skill-related attributes associated with
performance, Pareto frontiers should be used within sports science to visualise multiple performance metrics.
By analysing opposing data in tandem, more feasible expectations and benchmarks can be established to reveal
talent that may have been missed when analysing multiple metrics univariately.
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Abstract

The ‘nervous nineties’ is a famous colloquialism in cricket that conveys the mental challenge of batting within
reach of 100 runs. The name itself (and its public usage) implies that batting in the nineties is more challenging
than say batting in the eighties or once past 100, presumably due to internal pressure associated with the
possibility of reaching (or failing to reach) the illustrious milestone. If it is true that the nineties are an
especially difficult passage of an innings, historical data should show a change in the probability of dismissal,
run rate or risk-taking at this time. Yet, despite the notoriety of this batting moment, our inspection of the
relevant literature suggests that there are no formal attempts to verify the existence of the nervous nineties
(either mathematically or phenomenologically). In fact, to our knowledge, only one peer-reviewed publication
has explored the issue of batting performance near the century but did so with an interest in team
organisational behaviour and focused on the arguably less prestigious one-day international game. To close the
gap, we examined a combination of player-level, innings level and ball-by-ball level data using all available
international test matches since 2004 — then modelled the regression discontinuity of performance indicators
that might reflect nervousness around the 100 landmark. Preliminary analysis indicated no significant change
in the probability of dismissal during the nineties but did suggest a tendency among batters to increase their
run rate and score more boundaries. A separate multilevel logistic regression, used to specifically examine the
predictors of getting out in the nineties, primarily revealed vulnerabilities in less skilled batters. Our analysis
suggests that if players are nervous in the nineties, many have developed coping strategies to survive the
period, possibly including playing more aggressively to rapidly get into three figures.

Keywords: cricket, batting, performance anxiety, the nervous nineties
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Abstract

Mahjong is a class of imperfect information games typically played with four players using a set of mahjong
tiles. Players compete to form winning hands which are worth a certain number of points. It is a zero-sum game,
where the winner obtains points from another player or players according to the game situation. Unlike bridge,
there are no teams. The game originated in China and contrary to popular belief is relatively modern, with its
origins dating from around 1880. The game was exported overseas and was extremely popular in America in the
1920s. There are many variants both internationally and within different provinces of China: Hong Kong,
Sichuan, Shanghai, Taiwanese, Riichi (Japanese) are just a few examples.

In most forms of mahjong a standard winning hand consists of 14 tiles (17 in Taiwanese), and these 14 tiles
consist of four sets of three (five sets of three in Taiwanese) and one pair. A pair is two identical tiles, whereas
as set of three is either three identical tiles or a run of the same suit such as 1-2-3 or 7-8-9. A ready hand is a 13-
tile hand which is one tile away from winning. This document for the first time lists every possible type of ready
hand and every possible winning tile for each hand. This was achieved via brute-force, firstly by enumerating
every case, and then using an axiomatic approach to define when two cases are of the same type. Previous
combinatorial results on ready hands can now be derived by simply examining the table.

Keywords: Combinatorics, mahjong, mind games, ready hands

1. INTRODUCTION

A ready hand, or waiting hand, is a hand in mahjong that is one tile away from winning. The tables below give
a wait pattern classification system for mahjong, covering all possible cases. There are 828 wait patterns,
identified by integers from #1 to #828, although in the vast majority (99.67% in Riichi mahjong) of cases the
wait classification will be a number between #1 and #60.

There are many mahjong variants (Lo, A., 2001); the system here corresponds to the regular hands in most 14-
tile mahjong variants, where a regular hand is one that is completed by four sets and one pair. For consistency
the terminology we use here comes from Riichi mahjong (Chiba, D., 2016, Miller, S. D., 2015). Our tables also
provide another way of confirming previous combinatorial results in the literature such as Cheng, Y. et al.
(2017). For recent research in mahjong Al, see Li, J. et al. (2020).

The wait classifications were derived by using a computer to generate all possible patterns and successively
removing those that reduced to a simpler form. The most important thing for any wait classification system is
mathematical consistency, but there is no one correct method, since different axiomatic choices on what patterns
belong to the same wait category will lead to different outcomes. In order to avoid having too many categories,
we categorize edge cases (where a theoretical zero-tile or ten-tile would complete the hand) according to the
base form, so a wait such as 12345 is classified as #10 (Sanmenchan). One slight ambiguity is that in very rare
cases a tile pattern will simplify to two different existing categories of wait. We use the obvious solution and
allocate to the simplest category available.

The first table also gives the percentage frequency in Riichi mahjong of each wait classification. These are
derived from classifying all games played in 2018 in the Houou room of Tenhou. Tenhou is the primary website
for online Riichi mahjong, and the Houou room is for the top-level players. The algorithm used to derive the
wait classification for each hand is given in the next section. There were 209,720 games played with 1,735,985
agaris (hands that did not end in a draw).

The E in the required tiles represents the East tile: in this case it is assumed that the tile pattern also contains a
pair of East tiles. In general, it can be any pair unrelated to the main pattern. Double pattern waits can also occur,
where the second pattern is not a simple pair but is of the form 22234 or 23334. For double pattern waits we
take the computationally convenient approach of classifying the wait according to the pattern that is completed
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by the winning tile, for example a Double Entotsu wait, where the hand contains the pattern 22234 in two
different suits, is always classified as Entotsu (#11).

Patterns are ordered by number of tiles in the wait pattern, then by number of winning tiles (N-way), then by
number of outs. If all of these are the same, they are listed by numerical order of the wait pattern. If a pattern
that begins with the 2 tile and ends with the 9 tile can by completed the “10 tile”, then the example case is given
as starting at 1 and ending in 8. This maximizes the number of practical winning tiles and keeps the ordering
consistent. Reversed patterns are not listed.

2. METHODS

The algorithm to identify the wait pattern of a ready hand uses a look-up table that contains every non-separable
mahjong wait pattern and its corresponding wait category. A non-separable pattern is one that does not contain
any gaps of two or more tiles, since if there exists a gap of this size the pattern can be split into separate pieces.
For example, 3335777 is a non-separable pattern but 1234789 is a separable pattern (which separates into 1234
and 789). There are 19,273 non-separable patterns so the table has 19,273 rows and two columns: the pattern
and the wait category. The table contains reversed patterns to ensure that only one look-up is needed. The look-
up table means that we only need to construct an algorithm to extract the relevant non-separable pattern from
the waiting hand, which is far simpler than directly calculating the wait category. The construction of the look-
up table was via brute force enumeration.

The basic method is that we first cover non-regular hands (this may vary based on the variant; here we use Riichi
mahjong), then a winning honour tile, then a winning suit tile. If the winning honour tile forms a pair, we have
#1 (Tanki), if not we search for the relevant non-separable pattern in the rest of hand; if it exists then we look
up the wait in the table, if not then the wait is #3 (Shanpon). For a winning suit tile, we identify the non-separable
pattern closest to the winning tile. If it is anything

other than a simple pair we look up the wait in the table, otherwise we search for the relevant non-separable
pattern in the rest of hand, looking it up if it exists, or returning #3 (Shanpon) if it does not.

There are two concepts to define first:

Split: This subroutine separates a set of tiles into its non-separable pieces. There will either be a single piece (no
separation), two pieces or three pieces. For example, 111456999 separates into three pieces 111 456 999 as there
are two gaps of two tiles.

EqualToZ: This subroutine tests whether the number of tiles in a set is equal to any of 2, 5, 8 or 11. This is
important for identifying relevant patterns. At the points where we test if any of the suits/pieces are EqualToZ,
there are only two possible outcomes: none are EqualToZ, or exactly one is EqualToZ.

The Algorithm

1. Check for kokushi (a non-regular hand type). If so, Return #0.

2. Check for chiitoi (a non-regular hand type). If so, Return #1 (Tanki).

3. If winning tile is an honour tile and forms a pair, Return #1 (Tanki).

4. 1f winning tile is an honour tile and forms a pung, then test if any suits are EqualToZ. If there are none, Return
#3 (Shanpon). If there is one, apply Split to this suit and retain only the piece that is EqualToZ. Look-up this
piece and Return result.

5. If winning tile is a suit tile, apply Split to the suit and determine the piece closest to the winning tile. If this
piece is NOT a pair, look-up this piece and Return result. Otherwise, go to next step.

6. Determine if any of the other two suits or if any of the other piece(s) of this suit (if any exist) are EqualToZ.
If there are none, Return #3 (Shanpon). If there is one and it is another piece of the same suit, look-up this piece
and Return result. If there is one and it is one of the other suits, apply Split to this suit and retain only

the piece that is EqualToZ. Look-up this piece and Return result.

3. RESULT TABLES
Each table gives the wait pattern, the tile(s) required to win, and the number of outs, which is defined as the

number of tiles that are available to win, considering that there are four identical tiles of each type (i.e., the
number of required tiles multiplied by four, subtracting any that are already in the hand).
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2
23
22
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2223
2224
2234
2345
2334
23456
22234
22334
23345
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2223334
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22233445
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E2
3
134
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3
147
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1247
1346
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347
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5.73
43.7
13.17
14.15
1.08
0.6
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1.56
0.07
4.68
0.93
3.52
4.48
0.13
0.68
0.142
0.011
0.128
0.074
0.007
0.011
0.016
0.041
0.004
0.046
0.082
0.008
0.004
0.068
0.327
0.046
0.29
0.231
0.012
0.037
0.083
0.133
0.024
0.078
0.01
0.063
0.237
0.098
0.041
0.21
0.002
0.251
0.006
0.02
0.038
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51
52
53
54
55
56
57
58
59
60

Table 1: Basic sixty wait patterns with percentage frequencies.

TEN/ELEVEN TILE WAITS

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Tiles
2223456777
1112345678
2223456678
2333344567
2344445678
2223444456
2223444567
2223334567
2224566667
1234445678
2223345678
2233334567
2333345567
2333345678
2344555678
2222334456
2223344556
2223445566
2223455667
2233334456
2333344456
2333344556
2344445567
2223344445
2223334455
2224445566
2223344567
2223456667
2233444567
2223334456
2223344456
2233344456
2223334445
2223334555
2223445666
2222345666

Require
12345678
235689
134679
124578
235689
123567
123458
234578
34578
35689
13469
12458
12458
12458
13469
13467
13467
13467
13467
12457
12457
12457
23568
12356
13456
34567
23458
25678
12347
23457
23457
23467
23456
23456
23456
1457

22334455
22234555
22223344
22333445
22334445
23333445
23334445
23344456
23445567
22333344

Outs
22
19
19
19
19
18
16
15
17
16
16
16
16
16
16
15
15
15
15
15
15
15
15
14
13
13
12
12
12
11
11
11
10
10
10
14

E25
E25
E5
14
36
E6
25
25
36

97

98

99
100
101
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103
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105
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107
108
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110
111
112
113
114
115
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117
118
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121
122
123
124
125
126
127
128
129
130
131
132
133

0.026
0.003
0.002
0.017
0.018
0.002
0.006
0.046
0.079
0.000

N O OO OO OO ~O

2223333456
2224567999
2333344445
1222345678
2222344666
1113345678
1113456678
1113456789
2233445556
2333455667
2333456678
2222344456
2222344567
2223345567
2223445678
2233444456
2234444567
2333444456
2334444567
2222333445
2222334445
2223444556
2223445567
2223456677
2233344445
2222333444
2223333444
2223333445
2223345666
2223444455
2223466678
2344455567
2344466678
2223344455
2233445566
2223344555
2223457999

1467
3478
1256
1369
1345
2369
2369
2369
1467
1247
1247
1347
1347
1346
3469
1237
2358
1237
2358
1346
1346
3467
3467
5678
1236
1345
1245
2456
1346
2356
2569
1458
1469
3456
2356
2345

678
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14
14
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13
13
13
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13
13
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12
12
12
12
12
12
12
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11
11
11
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11
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10
10
10
10
10
10
10
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134
135
136
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138
139
140
141
142
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151
152
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158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

2222333344
2222333345
2222334444
2222344445
1112346678
1112346789
2223456778
2224455667
2224456678
2224556677
2224566778
2233344566
1123456789
1233345678
1233456678
1233456789
1234456789
2223455677
2233334455
2233445567
2233445677
2233445678
2234455667
2234566778
2234567789
2333445678
2334445567
2334455567
2334455678
2334456678
2334456789
2344456678
2344556678
2344566789
2223455777
2233334445
2223333455
2223444566
2223455567
2223455678
2223456788
2223467778
2223467888
2333455567
2333466678
2224444666
2334444556
1112345679
2224444567
2233344457
2234555567
2345555678
2233444556
2233444566

145
145
135
356
569
569
679
347
347
347
347
145
147
369
369
369
147
467
256
258
147
258
258
258
258
369
147
258
258
369
369
147
258
369
256
246
245
456
258
258
258
257
258
358
369
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207
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211
212
213
214
215
216
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218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

2333444556

2333445567

2334455667

2223445556

2333445556

2333456667

2333467778

2222334455

2234455556
22233344456
22333444567
11123456789
22233445567
22234455667
22234556677
22234566778
22234567789
22334455567
22234567888
11223345678
12233445678
12233456789
12333345678
12334455678
22223344567
22333444556
22334445566
22334445678
22334455667
22334456678
23333445678
23334445556
23334445567
23344455667
23344455678
23344555567
23344556678
23344566778
23344567789
23444456678
23444556678
12334567789
22233334445
22234555567
22333344445
22333444456
22233344455
22233444556
22234445566
22334445556
22223334445
22223344456
22333344455
22334444556

36
36
36
25
35
36
37

E147
E258
E147
E258
E258
E258
E258
E258
E258
E258
369
369
147
E69
369
ES58
147
147
369
147
147
E69
147
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258
369
E28
147
258
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E17
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E14
E28
E25
E25
E25
E25
E25
E25
E5
E5
14
36
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242
243
244
245

22334445567
23333444556
23333445567
23334444556

36
E6
E6
25

[, G O, R, |

246
247
248

23344455567
22223344555
22234455556

Table 2: Ten/eleven tile wait patterns.

FOURTEEN TILE WAITS

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

Tiles

1112345678999
1112345666678
2223456677778
2223334567888
2223344556777
2333345677778
2344445666678
1112333345678
2223444456678
2222334456777
2223333456777
2223444455667
2223444456777
2223456667788
2233444566667
1112345666789
1112223456789
1112223456678
2223444556677
1122233345678
2344455566678
2223334445678
2223334445666
2223344556677
2223455566677
2333344445678
1113455556789
2222344566667
1113455556678
2333344555567
1222233456789
1111223345678
1112233445678
1112334455678
1112344556678
1112345566778
1112345667788
1112345677889
1222233456678
1223344445678
1233334555678
1233334567789
1233444455678

Require
123456789
12345789
12345689
23456789
12345678
1245689
1235789
1245689
1235679
1345678
1245678
1235678
1235678
1346789
1234578
1234567
1234679
1234679
1234578
1235689
1245689
2345689
1234567
2345678
1234567
125689
234679
134578
234679
124678
134679
235689
235689
235689
235689
235689
235689
235689
134679
235689
124569
124578
235689

Outs
23
23
23
19
19
23
23
20
20
19
19
19
19
19
19
17
17
17
17
17
17
16
15
15
15
20
19
19
19
19
17
17
17
17
17
17
17
17
17
17
17
17
17

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

2222334456678
2223344445678
2223344556678
2223445566678
2223455666778
2233334455667
2233445566667
2233445666678
2333344455667
2333344555667
2333344555678
2333344556678
2333344566778
2334455556678
2334455666678
2334456777789
2344455556678
2223334444567
2223334455678
2223344445567
2223444455678
1112344567888
1113334455678
1113456667788
2233444555678
2223333445567
2223334455567
2223334555567
2223444566778
2223444567789
2223445566667
2224445566678
2233344455556
2233444555567
1112345556789
2223334445556
1112223345678
2223344455567
1112233345678
1112345556678
2224445556667
2344455666789
2223334455667
2223334555678

36
E5
E2

134679
123569
134679
134679
134679
124578
124578
124578
124578
124578
124569
124578
124578
134679
124578
235689
134679
123578
134569
123568
235689
134679
234569
236789
123469
245678
134568
234678
123458
123458
234578
345679
123467
123467
145679
134567
123469
345678
123469
145679
345678
134569
234578
234569

w

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
16
16
16
16
16
16
16
16
15
15
15
15
15
15
15
15
15
14
14
14
14
14
14
14
14
13
13
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336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

2223334556677
2223334566778
2223344455667
2223444567888
2223445678999
2233344456678
2233445556667
2333444555678
2223334445567
2223334456777
2223334445566
1111234567888
1112222345678
1112345555678
1113456788889
2222333344567
2222344445678
2222344567999
2222345566667
2222345666678
2223333456678
1113345555678
2333344445567
2344445555678
1122334445678
1223345556789
2222344445566
2222344445666
2222344456666
2223333444456
2223345566778
2223345667788
2223345677889
2223444455556
2223445567999
2233334556677
2233334566778
2233334567789
2233444455556
2233445556678
2233445677778
2333344455556
2333345566778
2333345567789
2333345677889
1223345556678
1233455556789
1234455556789
1112345567789
1122223345678
1122334555678
1222233345678
1222233445678
1223344555678

234578
234578
234578
123458
234569
234679
235678
123458
234568
123457
234567
34679
35689
23689
23679
14578
35689
13478
14578
14578
14679
23469
12568
23689
35689
14679
13567
13567
13457
12567
13469
13469
13469
12367
34678
12458
12458
12458
12367
14679
25689
12467
12458
12458
12458
14679
34679
13467
23568
13469
13469
13469
13469
13469

13
13
13
13
13
13
13
13
12
12
11
16
16
16
16
16
16
16
16
16
16
16
16
16
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
14
14
14
14
14
14
14
14

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

1223345666789
1233334445678
1233334456789
1233344445678
1233444456678
1233444456789
1233445555678
2222333445678
2222334445678
1112333445678
1112334456678
1112334456789
2233334456678
2233344445678
2333344455678
2333344456678
2333445555678
2334445555678
2344445556678
2344445566678
2344445567789
2222333444556
2222333444567
2222334445566
2222334445567
2222334455667
2223333444567
2223333445678
2223334455566
2223344455566
2223344555667
2223345678999
2223444555567
2223444556678
2223445556667
2223445566778
2223445666678
1112344555678
2223455677778
2223456666778
1112345566678
2223456777788
1112346667788
2233334445566
2233344445567
2233344456667
2333344455567
2333444455567
2333444555567
2222345666777
2223344455678
2223444455567
2223445566677
2223455566667

12457
45689
12457
23569
23569
23569
13469
13469
13469
23569
23569
23569
12457
12369
14569
12457
13469
13469
15679
15679
23568
13467
13458
13467
13467
13467
12458
24569
14567
13467
13467
13469
12348
34679
13467
34679
23459
13469
25689
25789
45679
25689
56789
12457
12367
25678
14568
13578
12348
14567
34569
23568
35678
24578

14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
12
12
12
12
12
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444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

2223455666677
2223455666678
2223456667778
1112333456789
1234445666789
1112233456789
1112345678889
1122333456678
1122333456789
1234445566789
2222334445666
2223333444555
2223333444556
2223334444556
2223334455556
2223344445566
2223344445666
2223344556667
2223344566778
2223344567789
2223444455566
2233444556677
2233444566778
2233445566678
2223334455666
2223334456678
2223344456678
2223344555777
2223344555678
2223344567888
2233344455667
2223344456777
2223334555666
2223344455666
2222333345777
2224444566667
1111234555678
1112346788889
1234444555678
2222333345567
2222333345678
2222334444556
2222334444567
2222344678999
2223345666678
2224455667999
2233334444567
2233334555567
2333345555678
2334444555567
1122334567778
1222334455678
1222344556678
1222345566778

24578
24578
56789
12347
34567
12347
14789
12369
12369
14567
13456
12456
24567
23567
23467
23567
12356
25678
23458
23458
23567
12347
12347
23569
13456
23457
23457
23456
23458
23458
23467
23457
23456
23456
1456
3578
3469
5679
1369
1458
1458
1367
1358
1345
1349
3478
1258
1248
1248
1238
3689
1369
1369
1369

12
12
12
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
10
10
10
10

N N oo o w o

14
14
13
13
13
13
13
13
13
13
13
13
13
13
13
13
12
12
12
12

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

1222345677889
2222333344456
2222333344556
2222333444456
2222334455666
2222334456666
2222344445567
2223333445566
2223333455667
2223455677999
1113344556678
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768 2223455578889 258 3 799 2233444467778 17 5
769 2223457777999 68 8 800 2233445555678 28 5
770 1223333445678 69 7 801 2234555566778 28 5
771 1112346666789 59 7 802 2234555567789 28 5
772 1122233345679 89 7 803 2234567788889 25 5
773 2334444555667 17 7 804 2333344566678 69 5
774 2334444556678 17 7 805 2333344566789 69 5
775 2222334455777 56 6 806 2333344578889 68 5
776 2224444556677 37 6 807 2333445555667 38 5
777 2224444566778 37 6 808 2333445666678 39 5
778 2224456677778 34 6 809 2333456666778 39 5
779 1233334577789 67 5 810 1222356666778 29 5
780 1112356777789 14 5 811 2334456666789 39 5
781 1123444456789 17 5 812 2223455556788 28 3
782 1123456777789 14 5 813 2233444556667 36 3
783 1222356777789 24 5 814 2333444555667 36 3
784 1223333466678 69 5 815 1233345677789 37 2
785 1233334566678 69 5 816 1233355577789 37 2
786 1233334566789 69 5 817 1222334577789 27 2
787 1233456666789 39 5 818 1222345677789 27 2
788 2222334455567 58 5 819 1222355577789 27 2
789 2222334455678 58 5 820 2333445678889 38 2
790 2222334456788 58 5 821 1222334578889 28 2
791 2222334467778 57 5 822 2333455578889 38 2
792 2222334467888 58 5 823 1222345678889 28 2
793 2223444455677 67 5 824 1222355578889 28 2
794 2223445555667 28 5 825 2222334445556 5 1
795 2223466777788 25 5 826 2233334456667 6 1
796 2223467788889 25 5 827 2233334467778 7 1
797 2233334466678 69 5 828 2333344556667 6 1
798 2233444456667 16 5

Table 3: Fourteen tile wait patterns.
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Abstract

Twitter is an online news and social networking site where people communicate in short messages called tweets.
This platform and style of communication provides an opportunity for people and organisations to connect with
followers world-wide. Twitter provides an API to enable programmatic access to tweets, enabling techniques
like natural language processing (NLP) to scalably process this massive collection of data. There is no shortage
of tutorials and guides on how to use NLP for detecting sentiment, emotions, or topics from machine readable
test, like tweets. Schweinberger (2021) provides a simple to use guide for users of the R package. Bracewell
(2022) extended the framework outlined in Schweinberger’s tutorial to include brand attributes, like “Being
Kiwi”. Here, we introduce a proprietary “Aussie Index”, an Australian equivalent of the “Being Kiwi” metric.
In addition, principal components are used on 10 years of mainstream media to collapse the eight core emotions:
Joy, Surprise, Trust, Anticipation, Sadness, Disgust, Anger and Fear to create two further proprietary metrics
which summarise the “Level of Emotion” and the contrast between “Light versus Dark” emotions.

The tweets of a high-profile Australian sportsperson are explored. The emotions, tone and volume of tweets
are assessed over a ten-year period. Prior to their publicised break from competing due to mental health reasons,
there is a change in tone of messaging. A drop in the “Aussie Index”, a change in the “Level of Emotion” and
increasing “Darkness” in emotions are observed.

These results do not imply that the detected tone and emotions in tweets predict mental health issues. Instead,
this case study suggests that this is a topic worthy of further investigation. Further research is required to
determine if it is possible to create a monitoring system, akin to Statistical Process Control, for tracking changes
in communication styles which may suggest potential issues.

Keywords: Natural Language Processing, NLP, Sentiment, Emotion Detection

1. INTRODUCTION

Natural language processing is a prevalent technique for scalably processing massive collections of documents.
This branch of computer science is concerned with creating abstractions of text that summarize collections of
documents in the same way humans can. This form of standardization means these summaries can be used
operationally in machine learning models to describe or predict behaviour in real or near real time, as required.
Bracewell et. al. (2022) outlined several approaches where sentiment had been used by DOT loves data (DOT),
a Wellington-based data science firm. He also explained limitations with their existing approach, particularly
regarding the overly simplistic nature of using just sentiment and volume of articles to summarise topics.

Bracewell et. al. (2019) outlined an approach which explored the relationship between on-field performance
and mainstream media perception of athletes. An athlete’s playing reputation was derived from a string of on-
field performances. This is essentially an estimation of their ability as described by Bracewell (2003). When
matches are previewed, this playing reputation informs the number of articles featuring an athlete and the
associated sentiment. That is, players perceived to have better ability are talked about more often and more
positively. Performances within a match appear to influence the media post-match review. That is, athletes who
performed well in a game are more likely to be mentioned and talked about favourably. This work illustrates
the potential to combine reputation risk management with both sports ratings and natural language processing
of mainstream media. Such an approach will enable delivery of a scalable solution for professional athletes and
their associates to understand the impact of their on-field and off-field behaviour on their personal brand. This
would aid strategic decisions around the type of content to develop, the best timeline to deploy certain content
and a measurement tool to assess the impact of that content. Moreover, such a tool could provide the ability to
identify mental health risks. For example, the resilience of a player to public scrutiny could help understand
which players need more support.

The concluding remarks by Bracewell et. al. (2019) about exploring the possibility of identifying mental
health risks are of great interest. This forms the basis of this research. However, this is not a topic to be taken
lightly. We do not seek to predict mental health issues. Instead, this case study suggests that this is a topic
worthy of further investigation. Further research is required to determine if it is possible to create a monitoring
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system, akin to Statistical Process Control, for tracking changes in communication styles which may suggest
potential issues.

2. DATA

Twitter is an online news and social networking site where people communicate in short messages called tweets
(https://twitter.com/). This platform and style of communication provides an opportunity for people and
organisations to connect with followers world-wide. The Twitter API enables programmatic access to Twitter
in unique and advanced ways (https://developer.twitter.com/en/docs/twitter-api). Twitter go further to provide
case studies and recommendations regarding how the different endpoints and features available on the Twitter
APl can be used (https://developer.twitter.com/en/docs/twitter-api/what-to-build). Topics outlined for
consideration by Twitter include: moderate conversations for health and safety, enable creation and personal
expression, measure and analyse “what’s happening”, improve community experiences, curate and recommend
content and impact the greater good.

3. NATURAL LANGUAGE PROCESSING
Bracewell (2022) extended the framework outlined in Schweinberger’s (2021) tutorial to include brand
attributes, like “Being Kiwi”, and demonstrated how this peaked during Olympic games and appeared to ebb
and flow within changes in New Zealand’s response between 2020 and 2022 to the COVID-19 pandemic.
Here, a proprietary “Aussie Index” is introduced which is an Australian equivalent of the “Being Kiwi”
metric. The same approach outlined by Bracewell et. al. (2022) is used where the R scripts provided by
Schweinberger (2021) are modified to customise the word lists for more specific applications. Simply, within
that script is a carefully compiled dataset, “nrc” which appears in this line:

dplyr::inner_join(get_sentiments("nrc")) Q)

This data set was replaced by a proprietary dataset suitable for use within the Australian context.
Importantly, the proprietary dataset is highly configurable. To build out this data set, synonyms and slang used
in distinctly Australian settings were researched, curated and collated for use. These were developed in
conjunction with Australian-based data led brand and collaborator marketing company, Talennial
(www.talennial.com).

In addition, principal components are used on 10 years of mainstream media (1% January 2009 to 31%
December 2018) to collapse the eight core emotions: Joy, Surprise, Trust, Anticipation, Sadness, Disgust, Anger
and Fear to create two further proprietary metrics which summarise the “Level of Emotion” and the contrast
between “Light versus Dark” emotions. These two principal components explain over 60% of the variation. In
addition, the both eigenvalues exceed 1, and are the only two dimensions to do so.

4, SUBJECT
Importantly, mental heath issues are a fraught topic, and this research is not undertaken without serious
consideration of the moral and ethical implications. We are dealing with personal and private information.
However, the subject of this research has spoken openly in the media about this topic. Furthermore, we believe
we are undertaking this research for the greater good. We are only using data that is publicly available.
Australian, Glenn Maxwell, is a talented batting Allrounder who has represented his country at international
level in all three formats of cricket (see: https://www.espncricinfo.com/player/glenn-maxwell-325026).
Middleton (2019, October 31) announced Glenn Maxwell had withdrawn from Australia's T20 International
squad and would take a “short” break from cricket to deal with mental health issues. Later, on March 25, 2020
the Sydney Morning Herald (www.smh.com.au) published an article online titled: “Glenn Maxwell details his
mental health demons™. Below is the opening few lines of that article:

“A mentally exhausted Glenn Maxwell wanted his arm to be broken during Australia’s
World Cup campaign last year so he could have a break from international cricket. He
didn't realise it at the time but the star all-rounder was battling mild depression and
anxiety. Falling into a dark place would eventually lead to Maxwell stepping away from
the game last October for more than a month.”

These two articles provide sufficient information to begin compiling data. Maxwell is verified on Twitter
as “gmaxi_32”. This provides sufficient information to extract his tweets using the Twitter API.
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4. METHOD

Glenn Maxwell tweets, from his account, g maxi_32, were extracted between March 2011 and September 2021.
These were then pass through the NLP algorithm described previously which appended to every tweet: sentiment
polarity; eight emotions: Joy, Surprise, Trust, Anticipation, Sadness, Disgust, Anger and Fear; “Level of
Emotion”, “Light versus Dark” and the “Aussie Index”. These attributes were averaged per day. In addition, a
28 day rolling average was applied. These metrics were plotted and step changes were assessed. For the emotion
and the Aussie Index, these are rated per 100 content words. Content words include nouns, verbs, adjectives
and adverbs. The two principal component derived metrics “Level of Emotion” and “Light versus Dark” are
from the mainstream media population of articles, with population has a mean of 0 and standard deviation of 1.

5. RESULTS
Annotated graphs displaying the metrics per day (dots) overlaid with the 28-day rolling average (solid line)
follow. The vertical line indicates 31 October 2019 which is the day of the Cricket Australia announcement.

100

Glenn Maxwell was highly active in the
early part of the 2010s. Average number of
tweets per week dropped gradually leading
in his breakdown

Log(Number of Tweets)

1 wvwes s 8 4T RO 4 8IS T A T . ST, | R e wa e v cari eve e o owavn]
18-Mar-11 26-Apr-15 7-Sep-16 20-Jan-18 4-Jun-19 16-0ct-20

Date

30-Jul-12 12-Dec-13

Figure 1: Log of the Number of Tweets per day between March 2011 and September 2021 by Glenn Maxwell

Figure 1 shows Glenn Maxwell was highly active in the early part of the 2010s. However, the average number
of tweets per week dropped gradually leading to his break from the game in October 2020. This provides
important context for reviewing the graphs that follow, particularly the continued activity.

Despite continued engagement on twitter —
T 1 ° Maxwell had a substantial shift in topic

discussion around the end of January 2017
k - )

—

Y

A
I S=— E - . M 8 - niae 1. |
18-Mar-11 A0k Jul-12 12-Dec-13 26-hpr-15 7-Sep-16 20-Jar-18 d-Jur-19 16-Oct-20

rate

Figure 2: Time series plot showing the prevalence of the “Aussie Index” per 100 Content Words between
March 2011 and September 2021 for Glenn Maxwell from his public tweets.
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Sadness as a topic trended downwards to become almost negligible from February\March |
2018. Sadness spikes to 5.0 content words per 100 in the lead up to 31 October 2019.
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Figure 4: Time series plot showing the prevalence of the emotion, Sadness, per 100 Content Words between

March 2011 and September 2021 for Glenn Maxwell from his public tweets.
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Figure 6: Time series plot showing the “Tone of Emotion” in Glenn Maxwell’s public tweets between March

2011 and September 2021
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5. DISCUSSION

The graphs (Figures 2-6) show a change in the topics, type of emotion and tone of tweets over a two year period
of continued activity on Twitter by Glenn Maxwell (Figure 1) from his verified gmaxi_32 account. Importantly,
this does not mean that the output can be used to predict looming mental health issues but serves as an indication
this type of process could be worthy of further exploration.

Figure 2 shows a distinct change in the “Aussie Index”. Did Glenn Maxwell lose his Authentic Self? Despite
continued engagement on twitter, Maxwell had a substantial shift in topic discussion around the end of January
2017.

Trust as an emotion dropped considerably post this shift in topic discussion in late January 2017 from 3.45
content words per 100 to 1.79 content words per 100 prior to 31 October 2019, falling further to 1.60 from 31
October 2019 to September 2021 as shown in Figure 3.

Figure 4 shows that sadness as an emotion trended downwards to become almost negligible from
February\March 2018. Sadness spikes to 5.0 content words per 100 in the lead up to 31 October 2019.

The concepts derived from the interpretation of the principal component analysis: “Level of Emotion” and
emotional tone, “Light versus Dark” are shown in figures 5 and 6. These metrics are comparable to mainstream
media where the population mean is 0 and standard deviation is 1. Figure 5 reveals that the level of emotion in
Maxwell’s tweets dropped substantially post January 2017, hitting a low in October 2018. However, there was
a comparative jump in August 2019, but still low compared to his pre-2017 tweets. Increasingly dark emotions
are shown in Figure 6. Min particular, the emotions expressed via Tweets become increasingly dark from August
2015, before climbing to being on the light side for the 2016/17 Cricket Season. However, post January 2017
his emotions continued to become darker with sustained low for over a month prior to his decision to withdraw
from the Australian Cricket Team in October 2019.

6. CONCLUSION

The tweets of high-profile Australian cricketer, Glenn Maxwell were investigated using natural language
processing. The emotions, tone and volume of tweets were assessed over a ten-year period. Prior to his
publicised break from competing due to mental health reasons, there is a change in tone of messaging. A drop
in the novel, proprietary “Aussie Index”, a change in the “Level of Emotion” and increasing “Darkness” in
emotions were observed.

These results do not imply that the detected tone, emotions and topics in tweets predict mental health issues.
Instead, this case study suggests that this is a topic worthy of further investigation. Further research is required
to determine if it is possible to create a monitoring system, akin to Statistical Process Control, for tracking
changes in communication styles which may suggest potential issues.
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Abstract

Natural language processing is a prevalent technique for scalably processing massive collections of documents.
This branch of computer science is concerned with creating abstractions of text that summarize collections of
documents in the same way humans can. Bracewell et. al. (2016) outlined a method for quantifying the collective
mood of New Zealanders using mainstream online news content. Mood was quantified using a text mining
pipeline built with the Natural Language Toolkit (Bird, 2009) in Python to measure the sentiment of articles and
comments appearing in mainstream New Zealand media. A more refined approach is outlined by Schweinberger
(2021) where distinct emotions are assessed. Here, that approach is extended further to include a proprietary
attribute defined as “Being Kiwi”, where over 200 words that are readily associated with New Zealand’s national
identity, like: “haka”, “bbq”, “bach”, “kiwi”, are tracked over time. Plotting the prevalence of “Being Kiwi”
over the last decade reveals the highest points coincide with Olympic games. This has important implications
for tracking brand values and attributes over time regarding attracting and aligning sponsors.

Keywords: Natural Language Processing, NLP, Sentiment, Emotion Detection

1. INTRODUCTION

Text Mining, Natural Language Processing (NLP) and Natural Language Generation (NLG) are well described
in academic literature. Natural language processing is a prevalent technique for scalably processing massive
collections of documents. This branch of computer science is concerned with creating abstractions of text that
summarize collections of documents in the same way humans can. This form of standardization means these
summaries can be used operationally in machine learning models to describe or predict behaviour in real or near
real time as required. The predictive fill features within word processing tools like Google Docs and the
Microsoft Outlook App show mainstream usage of NLP and NLG.

DOT has had success in applying NLP to a range of text sources, particularly looking at sentiment. Initial
applications explored the concept of mood, derived from sentiment (Bracewell et. al. 2016). Sentiment was
quantified using a text mining pipeline built with the Natural Language Toolkit (Bird, 2009) in Python to
measure the sentiment of articles and comments appearing in mainstream New Zealand media. Commercially,
DOT has explored the relationship between brand sentiment and churn rates. However, to protect client
sensitivities, DOT ahs often reframed these problems to explore concepts relating to topical, current events to
publish findings.

Different NLP applications have been previously published ranging from using commentary sentiment as a
predictor of in-game events in T20 cricket (Mclvor et. al., 2018), predicting win margins with sentiment analysis
in international rugby (Simmonds et. al. 2018), exploring player ratings and online reputation in Super Rugby
(Bracewell, et. al., 2019) and an analysis of media reporting of extreme family violence in New Zealand
(Dissanayake et. al., 2021)

However, these approaches tended to lend themselves to one-off static reports and did not necessarily lead to
ongoing engagements and systematic monitoring. The intent was to make use of one massive, publicly available
source of data. Then, from that source, automatically deliver customisable and relevant outputs to many distinct
clients from varied backgrounds: business, sport, and politics for example.

Dissanayake et. al. (2021) provides the most recent overview of DOT’s collation of mainstream media
articles, called Pressroom. To date, this archive contains approximately 10 million news articles published
within publicly available main-stream media platforms dating back to 2005 and contains comprehensive
collections of articles published on New Zealand websites. The Pressroom is used to report on current events
and to track trends in both media reporting and social opinion.

We hypothesised that the difficulty in embedding the outputs within an organisation as an ongoing process
stems from the lack of more granular insight, difficulties in objectively displaying the outputs and diminished
transparency of outputs. The output of the initial processing, sentiment and number of articles, was too simplistic
and lacked enough detail to help connect the user with their understanding of the problem domain. This inability
to connect the user with the content creates a barrier to understanding and therefore diminishes trust in the output.
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2. METHODS

DATA

The depth and breadth of data contained within the proprietary Pressroom provides a unique opportunity within
NZ to configure unique tools for mass market use pertaining to reporting on current events. With millions of
time stamped articles to explore, this rich source of data allows NLP tools to be trained within a New Zealand
context. More importantly, given the volume of data, metrics generated can be scaled to create outputs that are
relatable, comparable, and trackable.  This helps bring context to the data by relating to the real world and
helping build trust in the outputs. Furthermore, the temporal component can be used to create ongoing
engagement, provided meaningful connection between the NLP outputs and client objectives can be achieved.

NLP ALGORITHM

To extract distinct emotions from the data, the more refined approach outlined by Schweinberger (2021) was
applied. Exploration of the applicability of this tool formed the basis on an investigation of historical text and
the implications of language evolution in a North American context (Soiferman et. al., 2022). Specifically, the
change in emotion associated with key words can be aligned to major events. This research highlighted the need
to evaluate the stability of characteristics, including features engineered based on word elements when deploying
operational models. This is an important issue to ensure that machine learning models constructed to summarize
documents are monitored to ensure latent bias, or misinterpretation of outputs, is minimized

As a further challenge, sentiment algorithms are based on text trained with overseas acquired data sets and
do not necessarily reflect the New Zealand context. We have had repeated requests regarding the inclusion of
Maori.

The tutorial prepared by Schweinberger (2021) provides a simple to use guide for users of the R package
with code supplied. It is a straightforward task to work within that framework to customise the word lists for
more specific applications. Simply, within that script is a carefully compiled dataset, “nrc” which appears in
this line:

dplyr::inner_join(get_sentiments("nrc")) (1)

This data set was replaced by a proprietary dataset suitable for use within the New Zealand context. Importantly,
the proprietary dataset is highly configurable. As part of ensuring this data fits the intended use case, Maori
terms are included, with our early work in modifying this data set covered in, national media outlet, Spinoff
(Sowman-Lund, 2021).

Here, that approach is extended further to include a proprietary attribute defined as “Being Kiwi”, where
over 200 words that are readily associated with New Zealand’s national identity, like: “haka”, “bbq”, “bach”,
“kiwi”, are tracked over time. Bracewell (2022) extended the framework outlined in Schweinberger’s tutorial
to include additional brand attributes, like “Competitive” and a “Being Kiwi” equivalent, plainly named the
“Aussie Index”. These were developed in conjunction with Australian-based data led brand and collaborator
marketing company, Talennial (www:.talennial.com).

A core component of developing these techniques is validation against an external context. This is described
in the next section.

3. RESULTS

The process for assigning sentiment, emotions and brand attributes strips out words that are not deemed
important like: “the”, “and”, “then” and “a”. This leaves content words, which include nouns, verbs, adjectives
and adverbs. Content words are then matched with one of more emotions, themes or brand attributes. To create
a prevalence score per 100 words. The first exploration of “Being Kiwi” is shown in Figure 1. The monthly
average per month for the prevalence of “Being Kiwi” is approximately 0.244 for the period prior to January
2020. That is, for every 1000 content words, 2.44 of those words are related to “Being Kiwi. The period post
January 2021 is explored in Figure 2. Over the last decade reveals the highest points coincide with Olympics
games as shown in Figure 1. The 2012 Summer Olympics were held from 27 July to 12 August 2012 in London,
England, United Kingdom. The 2016 Summer Olympics, known as Rio 2016, were an held from 5 to 21 August
2016 in Rio de Janeiro, Brazil. The 2020 Summer Olympics, known as Tokyo 2020, were held from 23 July to
8 August 2021 in Tokyo, Japan. To account for seasonality, and to account for any potential impact due to other
annual events, we compare the month of the event with the same month the year prior. This reveals that “Being
Kiwi” had a year-on-year increase of 19%, 17% and 28% for the 2012, 2016 and 2020 Olympics respectively.
These are the major peaks as observed in Figure 1, which has important implications for tracking brand values
and attributes over time regarding attracting and aligning sponsors.
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Regarding Figure 1 and observing the spikes due to the Olympics raises questions about the role of rugby on
New Zealand’s national identity. This topic was explored by Bracewell et. al. (2016) where sentiment was found
to but statistically significantly, and positively shifted by the All Blacks 2015 World Cup success. However,
the Olympics appears to dominate on this novel index. This may be shaped by certain words used in creating
the “Being Kiwi” metric. However, a more detailed investigation of an embedded period provides further
support for this metric representing the New Zealand “way of life”.

That is, an interesting feature of the decade long view of “Being Kiwi” is the apparent drop following January
2020. To investigate this further, a 28-day rolling average of the prevalence of “Being Kiwi” per 100 content
words was explored and plotted over nearly two years. Several the peaks and troughs are explored.

Coinciding with this time frame is the COVID-19 pandemic in New Zealand. This is part of the ongoing
pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The first case of the disease in New Zealand was reported on 28 February 2020. Key events
are annotated on Figure 2, with more detailed information available from the NZ Government at the following
website:  https://covid19.govt.nz/about-our-covid-19-response/history-of-the-covid-19-alert-system/. That
website provides specific details about how New Zealand handled the response to COVID. Interestingly, troughs
appear to occur when parts of New Zealand went into Lockdown or faced restrictions. Level 4 was the harshest
of the restrictions in New Zealand under the Covid Alert System and Level 1 the least restrictive. Late in 2021
this operating framework migrated to a Traffic Level System under the Covid Protection Framework, with the
red setting the strictest and green the most open.

Of particular interest is the apparent increases in “Being Kiwi” when restrictions were eased. This suggests
that the data may be identifying features of relevance in quantifying the New Zealand way of life.

4. DISCUSSION

A core component of developing these techniques is validation against an external context. In the previous
section, two periods were examined. The first analysis showed that during periods of Olympic competition there
were between 17% and 28% increases in the metric for the number of content words per 100 associated with
“Being Kiwi”, compared with the same month the year prior. Given the Olympics is an opportunity for New
Zealand to present itself on the world stage, this suggests that this algorithm is detecting some useful features
regarding how journalists write about New Zealand athletes during this period of competition.

Then, a more granular review of how this metric evolved daily whilst New Zealand was in the depths of a
response to the COVID-19 global pandemic was undertaken. Here, it appeared that when New Zealand went
into more restrictive states, such as lockdowns, journalists did not use as many words in articles that would
typically be associated with “Being Kiwi”. Furthermore, as restrictions eased, there appears to be a
contemporary increase in the use of words associated with “Being Kiwi”.

Given that changes in the proposed metric, “Being Kiwi” appears to change as events affecting New
Zealanders unfolded, it is not unreasonable to make the observation that the “Being Kiwi” metric identifies
phrases and words that are aligned with New Zealand’s national identity.

5. CONCLUSIONS

As New Zealanders experienced a roller coaster of self-identification in the wake of various Covid-19 Alert
System Levels, there was one shining light for Kiwis, the 2020 Tokyo Olympics, which ended on 9th August
2021. This was measured by expanding on the work by Schweinberger (2021). That approach was extended
further to include a proprietary attribute defined as “Being Kiwi”, where over 200 words that are readily
associated with New Zealand’s national identity, like: “haka”, “bbq”, “bach”, “kiwi”, are tracked over time.
Plotting the prevalence of “Being Kiwi” over the last decade reveals the highest points coincide with Olympic
Games. The implication is that the reporting in mainstream media around the Olympics uses key words that are
associated with the New Zealand national identity. This has important implications for tracking brand values
and attributes over time regarding attracting and aligning sponsors. The extension to explore daily movements
relative to issues affecting all New Zealanders provides further validation of this metric.
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Abstract

The timing of substitutions in the NBA is influenced by several in-match and pre-match factors. While some
teams adhere to a static, pre-determined schedule, others adopt a more dynamic approach, rotating players based
on the state of the game. The primary objective of this study was to define the range of substitution strategies
used by NBA teams in the 2019-2021 seasons. Secondary objectives were to measure the similarity between
teams’ substitution strategies and to analyse their predictability. K-means analysis was used to cluster
substitution strategies. A team’s substitutions within a quarter were represented as an n-tuple, where each
element denotes the time of a substitution (measured in seconds since the beginning of the quarter). The number
of substitutions per quarter varies, hence tuples were transformed to achieve consistent dimensionality for
clustering. Two methods were tested for this transformation. K-nearest-neighbor classification was used to
predict the timing of a team’s substitutions. Accuracy of these models were compared amongst teams to quantify
the predictability (estimated via model error) for all teams in the NBA.

Keywords: NBA, basketball, clustering, interchanges, rotations, team sports, rotations

1. INTRODUCTION

Stint duration and substitution timing has been a commonly researched topic in team sports literature. In
particular, there has been a focus on optimising player performance through substitution strategies. In AFL, for
example, Corbett et al. (2017) found a weak relationship between physical performance and stint duration.
Similar research in field hockey identified the fifth minute of play as being one where fresh players experience
signs of fatigue (Linke & Lames, 2016). Linke and Lames (2016) additionally note, however, that player
performance in the first minute of play following a substitution is significantly higher than the team average,
noting the tactical advantage of substituting players. In an era where player management is of increasing
importance (particularly to minimise injuries), further research into the trends and optimisations of substitution
strategies is required.

In this study we present methods for analysing the timing of substitutions in the NBA. Games in the NBA
contain an unequal number of substitutions due to limited rules regarding their timing, hence there is a great deal
of diversity between teams in their approach to substitutions. The primary objective of this study was to define
the variety of substitution strategies employed by teams. Unsupervised machine learning technigues were used
to partition substitution time series into clusters. From this, we measure the similarity of teams in the NBA and
produce a supervised machine learning model capable of predicting substitutions towards the end of a quarter
based on the observed substation timings in the preceding minutes of play.

2. METHODS

DATA COLLECTION AND PRE-PROCESSING

Data was collected from all matches played during the 2019-2021 NBA seasons as of March 2022. Second
Spectrum? player tracking data was used in this analysis. While player tracking data was not required for the
analysis conducted in this study, these datasets can be used as a source for substitution times. At any point in
time, the position of the five on-field players on each team is tracked in 25Hz using optical tracking systems.
We obtain the exact frame that a substitution occurs by monitoring changes in the on-court player IDs.

An NBA match consists of four 12-minute (720 second) quarters in the case of no overtime play. In the
event of a draw at the end of the fourth quarter, teams continue playing in five-minute overtime periods until a
winner is declared. In this study, we analyse substitutions occurring in the four regular 12-minute quarters.

Player tracking data was incomplete or missing for a small number of matches in the analysed seasons.
Incomplete matches were dropped from the analysis. All 30 NBA teams were included in this study, and a total
of 3230 matches played between October 2019 and March 2022 were analysed.

1 https://www.secondspectrum.com/index.html
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SUBSTITUTION TIME SERIES SAMPLES

A team’s substitutions within an individual quarter were represented as an n-tuple, with each element denoting
the time (in seconds) where a substitution occurred. For example, the tuple (299, 377, 503, 503, 503) indicates
a quarter where a single player was substituted at 299 seconds, another single player at 377 seconds, and finally
three players at 503 seconds (4:59, 6:17, and 8:23 minutes respectively). For the purpose of clustering quarters,
quarters where 0 substitutions occurred were dropped from the dataset. There is no strict rule requiring or
restricting the number of substitutions in a quarter (or game), resulting in a varying number of substitutions in
each sample. Across the analysed matches, an average of 5.4 + 2.2 substitutions occurred per team each quarter.
The total number ranged between 1 and 18 substitutions, and the median was 5.

The number of substitutions varies between samples; hence transformation was required before each sample
could be clustered. Two methods for performing this transformation were trialled. The first approach involved
partitioning each 12-minute quarter into one-minute bins (0-1 minutes, 1-2 minutes, etc.). Each sample was then
represented as a 12-tuple, where each element (n) records the number of substitutions that occurred in the n
minute. This process produces a dataset containing quarter substitution time series of equal size for all matches.
The result is easy to interpret, however discretising data can produce misleading results in the case of samples
falling close to the bounds of each bin.

The second transformation technique involved using kernel density estimation (KDE) to produce a
continuous time series (at one-second intervals) of substitution density. KDE involves estimating the probability
density function of a time series, producing a smooth density curve. The bandwidth of the kernel determines the
amount of influence each data point (or substitution) has over the time around it. Scipy’s implementation of
KDE was used in this study (Virtanen et al., 2020). Bandwidth selection was set to Scott’s factor (Scott, 2015)
divided by four to minimise smoothing across the quarter (and produce a shape that retains the timing of
substitutions). The advantage of this transformation technique is we produce a continuous time series; however,
this may be harder for coaching staff to interpret.

Examples of each transformation technique are presented in Figure 1. In each plot, the continuous line is
the KDE representation of a substitution time series, and the discrete bars are the binned representation of the
same sample. The example on the left is of a quarter were 3 substitutions occurred in the third minute, following
single substitutions in the 4%, 5 7" 8h 11" and 12" minutes. The example on the right has a total of 11
substitutions, roughly grouped around the start, middle, and end of the quarter.

2
1
0
4 8 12 0 4 8 12

Figure 1. Histogram and KDE representations of two substation time series

0

MEASURING TEAM SIMILARITY

The similarity between each team in the NBA is measured based on the substitutions they performed across the
analysed seasons. For each team, we produce a dataset of their transformed substitution samples. Euclidean
bipartite matching between teams A and B is used to measure the similarity between the two teams. The
Euclidean bipartite matching process involves pairing samples from dataset A and B, such that the total Euclidean
distance between the matched pairs is minimised (Mézard & Parisi, 1988).

From this process, we produce a cost matrix measuring the distance between each team in the NBA. Teams
are clustered via hierarchical clustering (using a 70% distance threshold for creating clusters). This process was
performed for both methods of transformation detailed in the section above to compare results using either
method.
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CLUSTERING QUARTERS

K-means clustering was used to cluster substitution samples. K-means clustering is an unsupervised machine
learning technique used to partition data samples into groups based on the distance (commonly the Euclidean
distance) between samples and cluster centres. This technique has been applied to a variety of sports analytics
problems such as the grouping of teams based on playing style (e.g., Spencer et al., 2016). The number of clusters
(k) was chosen based on the elbow method, in which k is chosen as the point from which increasing k has a
reduced effect on minimising the total error (in our case, the sum of squared distances between samples and
cluster centres) (Kodinariva & Makwana, 2013).

PREDICTING SUBSTITUTIONS

A secondary objective of this study was to assess the predictability of substitution strategies within NBA teams.
While this is a complex topic and grounds for future research, we propose the accuracy of predictive models as
a proxy for quantifying teams’ ‘predictiveness’. To measure this, we use the k-nearest-neighbours (KNN)
algorithm to predict a team’s substitutions for the remainder of a quarter after time t, given their substitutions in
the quarter up to time t. In this study, t = 360s (i.e., we observe behaviour in the first half of a quarter to predict
behaviour in the second half). KNN classification involves classifying a sample’s class based on the Euclidean
distance between the sample and training samples (Peterson, 2009). Performance is optimised via adjusting the
value for k which determines how many neighbours the prediction is based on.

Model inputs are the KDE representation of each quarter up to 360s, and the output (or response variable)
is its cluster (from the k-means analysis detailed in the previous section). If we can accurately predict the cluster
that a partial time series belongs to, we can output the likely shape for the remainder of the quarter. We use an
80/20 split for our training and testing datasets. Model performance was evaluated via raw predictive
performance (i.e., the percentage of correctly labelled results), as well as via log-loss (Eqg. 1) which considers
the predicted probabilities when assessing model performance. A smaller log-loss value indicates a stronger
model. To analyse the predictability of teams we output the log-loss of each team. Log-loss is calculated as
follows,

1 N M
logloss = =3 > > yylog () &)
i=1 j=1
where,
N No. of rows in test set
M No. of classes
Yii 1 if observation belongs to class j; else 0
Pii Predicted probability that observation belongs to j
3. RESULTS

TEAM SIMILARITY

Dendrograms produced from the distance matrices using discrete transformation via binning (Figure 2) and KDE
transformation (Figure 3) are presented below. We focus on the positioning of the San Antonio Spurs (SAS).
Using the discrete transformation method, SAS are grouped with Memphis Grizzlies (MEM), Milwaukee Bucks
(MIL), and Utah Jazz (UTA). Using KDE transformation, SAS remain grouped with MEM and MIL, while
being one group detached from UTA. Additionally, Charlotte Hornets (CHA) joins the group despite larger
separation in the discrete transformation method.

QUARTER CLUSTERS

A total of 30 clusters were chosen for the k-means clustering of quarter time series. Clustering was performed
on quarter samples transformed using the KDE transformation method. The centres of these clusters (0 through
to 29) are presented in Figure 4. A variety of strategies are represented within these 30 clusters, such as quarters
where substitutions occurred only at single points during a quarter (e.g., cluster 15, 16, 17) or quarters were
substitutions occurred at the beginning of a quarter, followed by a second group of substitutions later in the
quarter (e.g., at the beginning and middle of a quarter in cluster 0, or at the beginning and end of a quarter in
cluster 6).
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Figure 2. Hierarchical clustering of teams using the one-minute bins transformation method
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Figure 3. Hierarchical clustering of teams using the KDE transformation method

kNN PREDICTION RESULTS
A kNN model was trained using substitution time series for the first half of each quarter. A k value of 50 was
used in this process. Values beyond 50 yielded minimal improvements to overall performance. Using a 360-
second window (or half a quarter), the model was able to successfully predict 59% of quarter clusters.
Examples of the prediction process are displayed in Figure 5. As detailed above, we use a 360-second (half
a quarter) training window to predict what teams will do in the remaining 360-seconds of a quarter. The blue
line is the ground truth time series (transformed via KDE). The dotted lines represent the KNN predictions for
the remainder of each quarter. The confidence of each prediction is denoted in the legend of each plot. In some
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cases (e.g., Figure 7a) the algorithm has high certainty in a single cluster, while others (e.g., Figure 7b) the
prediction can be spread across more clusters.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

0O 4 8 120 4 8 120 4 8 120 4 8 120 4 8 120 4 8 12
Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11

0O 4 8 120 4 8 120 4 8 120 4 8 120 4 8 120 4 8 12
Cluster 12 Cluster 13 Cluster 14 Cluster 15 Cluster 16 Cluster 17

O 4 8 120 4 8 120 4 8 120 4 8 120 4 8 120 4 8 12
Cluster 18 Cluster 19 Cluster 20 Cluster 21 Cluster 22 Cluster 23

0O 4 8 120 4 8 120 4 8 120 4 8 120 4 8 120 4 8 12
Cluster 24 Cluster 25 Cluster 26 Cluster 27 Cluster 28 Cluster 29

0O 4 8 120 4 8 120 4 8 120 4 8 120 4 8 120 4 8 12

Figure 4. Time series plots of the 30 clusters produced by k-means clustering

(b)
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Figure 5. Example predictions after the 6th minute using k Nearest Neighbor (kNN) classification with labeled
probabilities for predictions (dashed lines)

Finally, we measure the log-loss of predictions, grouped by team, and present these results in Figure 6,
ordered by log-loss (where a smaller number indicates lower error or better predictability). After discussion with
coaching and sport science staff, Phoenix Suns (PHX) and MIL were identified as two high performing teams
across the analysed seasons (having topped the conferences in the 2021-22 season and made playoffs in the
2020-21 season). Based on log-loss, PHX and MIL were middle of the pack in terms of predictability.
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Figure 6. Loss-loss of kNN predictions for each team in the NBA

4. DISCUSSION

This study presented a method for defining substitution strategies in the NBA using k-means clustering on
substitution time series for individual quarters. This output was used to measure the similarity between teams,
and to predict future substitution behaviour based on substitutions up to the middle of the current quarter.

Two processes were trialled for transforming the substitution time series into samples of equal dimensions
for clustering. The first involved partitioning the quarter into 12 one-minute bins and counting the number of
substitutions that occurred in each bin. This process discretises the data. The second process retains the
continuous nature of these substitutions by converting the time series into a smoothed time series measuring the
density of substitutions across the 720 seconds of each quarter (via KDE). While this output produces a
continuous dataset, its interpretability by coaching staff should be researched. In general, we might suggest that
the discrete, binned dataset produces an output that is easier to interpret to a wider audience (Figure 1). The
downside of the binning process, however, is that the use of arbitrary bounds can result in datasets having large
Euclidean distances between them despite interchanges occurring at similar times. As an extreme example,
substitutions occurring at 0:59 and 1:01 would be considered as far apart as substitutions occurring at 0:01 and
1:59. In the case of KDE transformation, the former pair would have minimal distance between them.

Predicting substitution behaviour in the second half of a quarter based on the timing of substitutions in the
first half yielded strong results, with the correct cluster predicted in 59% of testing samples. Future research into
how this performance changes based on a variety of match conditions should be conducted. For example, the
addition of match information (e.g., score-line differential) may improve model prediction. In team sports
literature it has been shown that the strategy and positioning of teams changes because of situational variables
such as match location and opponent quality (Santos et al., 2017). It is likely that these factors would also have
an impact on substitution timings. Behaviour in the fourth quarter, for example, is likely to be heavily influenced
by the status of the game. These factors present an opportunity for future research to improve model prediction
and quantify specific factors that cause NBA teams to make substitution decisions. An alternative approach to
this topic could involve the use of association rules. Association rules can be used to determine the effects of
match context on a fixed response variable (e.g., how kicking constraints affect kicking success in the AFL in
the case of Robertson et al., 2019).

This study presented one method for measuring the predictability of teams via the log-loss of team-specific
substitution predictions. In highlighting two top performing teams across the analysed seasons (PHX and MIL),
we note that there is no clear trend as to whether being more or less predictable (as quantified via the presented
methodology) improves a team’s performance. Further research is required to analyse predictability relating to
a variety of match factors, such as those touched on above.

5. CONCLUSIONS

This study presented a method for defining the range of substitution strategies employed by NBA teams in the
2019-2021 seasons. Using transformed substitution time series, team similarity was measured using Euclidean
bipartite matching. Results revealed consistency in the similarity between SAS and a number of teams, however
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there were differences in the number of clusters and positioning of some teams when taking a discrete (via
binning) or continuous (via KDE) approach to the transformation of substitution time series samples. The
predictability of teams was assessed via a kNN classification model to predict a team’s likely substitution pattern
in the second half of a quarter, given the timing of their substitutions in the first half of said quarter. We found
that the predictability of teams varies greatly throughout the league. Finally, analysing PHX and MIL’s
performance (as recent conference winners) did not reveal clear trends in a specific substitution style relating to
success in the NBA (or their ability to be more or less predictable).
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Abstract

Live data collection is nothing new in sport. However, the ability to turn said data around into salient and
actionable outcomes during a game remains a challenge. For the last six years, the authors have been analysing
netball at both national and international levels. This includes, from team-based metrics to individual outcomes.
As such, as performance analysts, they have been able to convey live data and live insights to coaches and
players in their specific teams. However, being able to generate inferential outcomes in time-poor scenarios
remains a challenge. The authors discuss existing techniques that have been used to convey outcomes during a
match scenario, such as video, and some connections that are of influence. They then propose how to use network
analysis from live possession data to ascertain pivotal players and then peel back the factors of influence in a
game. Some examples of the models used are shown, and their relationship to outcomes.

Keywords: Coaching, network, netball, in-play
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Abstract

Using the scoring of goals, and their misses, we evaluate the importance of a shot in netball. We consider both
national and international games which, in Australia, currently have very different scoring systems. The “Super
Shot” in Suncorp Super Netball (SSN), the Australian domestic league at time of writing, affords two goals if
successful, and is awarded from a range of three metres or more from the post while still inside the shooting
circle. With its additional degree of difficulty to the shot comes a greater reward. Whilst Fox & Bruce (2020)
published the success and expected value of this shot, we consider here the importance in the outcome of a goal
made or missed from all four possibilities (in SSN), and two in conventional netball. Thus, through evaluation
of two years of SSN data and International and Domestic games, we find that strategies require variation
depending upon the margin, time of game, and mode of game. We utilise a Brownian motion variant to estimate
the probability of a goal scored, and utilising modifications of Morris’ (1977) model for Importance, this enables
determination of strategy dependent upon outcome. Most notably, and obviously, the Super Shot yields big
rewards and bigger consequences if missed, however the state of the game provides great insight into the desire
to take risky shots.

Keywords: Brownian motion, netball, importance
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THE TRUE MEANING OF THE OLYMPIC MOTTO IS NOT THAT
RECORDS HAVE BEEN BROKEN BUT RATHER THE MINDSET BY
WHICH RECORDS CONTINUE TO BE BROKEN AS WELL AS INSIGHT
INTO MENTAL HEALTH ISSUES AFTER A SUCCESSFUL CAREER

Raymond Stefani
California State University, Long Beach (USA)
Raystefani@aol.com

Abstract

The Olympic motto, Citius, Altius, Fortius, was coined by Father Henri Didon in 1891, to teach athletes to do
their best to run a bit faster, to jump a bit higher and to become a bit stronger than before. He didn’t say anything
about beating anyone, setting a record or being on a team. Following his meaning, when a young person enters
sports, they accept the “new normal” of that day, using then-available nutrition, training and equipment to
produce increasing amounts of power. They use then-available coaching and techniques to turn that power into
increased performance. At the same time, others are working to improve those factors. The best of those
improving athletes will compete on sports teams, the best of them will be on national teams, the best of them
will win medals and the best of them will set records, due to the cumulative effect of self-improvement. For
example, using Olympic championship performances from 1928 to 2020/21, the Percent Improvements per
Olympiad (%1/0) led to cumulative improvements creating previously unimaginable performances. In running,
the %I/0 (with cumulative improvement in parentheses) for women were 0.7% (15%) and for men 0.5% (10%).
For jJumping, women achieved 1.4% (29%) and men achieved 1.0% (21%). In swimming women achieved 1.6%
(33%) while men achieved 1.4% (28%). Michael Phelps’ documentary shows that the top athletes experience
mental health issues due to feeling meaningless when the next generation of athletes follow the same process
and obtain similar performances compared to these top athletes, who also feel powerless when they leave
competition and lose all means of financial support. Counsellors are needed to deal with the athletes’ self-worth
while in competition and with transitional planning for the future.

Keywords: Olympic motto, performance improvement, breaking records, running, jumping,
swimming, mental health, nutrition, training, equipment, coaching.

1. INTRODUCTION

Prior to the Tokyo Olympics, originally scheduled for 2020 but held in 2021, on 20 July 2021, the IOC modified
the Olympic Motto to read “Faster, Higher, Stronger - Together”, IOC (2021). By adding “Together”, the 10C
pledged that sport should advance by the unified efforts of all to conquer COVID and to further the goals of
sport in general and the Olympic movement in particular. As the Tokyo 2020/21 Olympics progressed, as is
usually the case with Olympic Games, world media implied that those who set records exemplified the “Faster,
Higher, Stronger” manta, while similarly, individuals and nations that gained the most medals exemplified the
purpose of the Olympics. None of those descriptions actually fit what the Olympic Motto truly means and what
the Olympics themselves should evoke.

On 7 March 1891, at an Arcueil College sports assembly in France, Father Henri Didon, a Dominican Priest,
taught that the students’ goal in sport should be to do their best to improve little by little, that is, to run a bit
faster, to jump a bit higher and to become a bit stronger than they had been before. He didn’t say anything about
beating anyone or setting a record. He gave them a Latin motto in sport as in life: Citius, Altius, Fortius, IOC
(2002).

His friend, Baron de Coubertin, was present. When de Coubertin founded the modern Olympic movement
in 1894, he chose Citius, Altius, Fortius as the Olympic Motto. Baron de Coubertin clarified the meaning of the
Olympic Motto, by creating the Olympic Creed, 10C (2021), based on a talk given at the 1908 Olympics by
Ethelbert Talbot, Bishop of Pennsylvania. Following Talbot, Coubertin’s Olympic Creed reads "The most
important thing in the Olympic Games is not to win but to take part, just as the most important thing in life is
not the triumph but the struggle. The essential thing is not to have conquered but to have fought well.”

The true essences of sport and the Olympic movement are therefore self-improvement and participation.
When a young person becomes interested in physical activity, their mindset should therefore be to choose the
methods of that day and age (that new normal), not thinking about the past or wondering if anyone in the future
will do better. The vast majority are just having some fun with physical activity. There is a pyramid of methods
that builds to performance. For coverage of the physics and performance components of the sports in this
paper, including the ratio of female/male winning velocities, see Stefani (2008) and Stefani (2014).
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The athlete employs the then-available methods of nutrition, training and equipment to create physical power.
Next, then-available coaching and techniques covert that power to performance in the chosen sport. While the
young athletes are doing their best to improve, using the methods of their era, sports scientists are working to
improve nutrition, training, equipment, coaching and technique. Those technical improvements elevate what the
athlete can achieve. The best of those improving athletes will compete on sports teams, the best of them will be
on national teams, the best of them will win medals and the best of them will set records, due to the cumulative
effect of self-improvement. Citius, Altius Fortius (Faster, Higher Stronger) explains how records are set, not
that records have been set.

Recently, another important area of sports performance has come to the fore: mental health. Top athletes
have spoken about mental health, such as tennis player Naomi Osaka, who was chosen by Japan to light the
Olympic Torch, and Simone Biles, considered to be one of the greatest gymnasts ever. That topic will be covered
herein.

The rest of this paper will begin by examining the remarkable improvements in Olympic winning swimming
velocity, including a comparison of Johnny Weissmuller at 100m in 1924 and Grant Hackett at 1500m in 2004.
The cumulative improvements for Olympic champion men and women in athletics (running and jumping) and
in swimming, averaged over all events, will be evaluated, demonstrating application of the true meaning of the
Olympic Motto. From changes to the rate of improvement, the effectiveness of some technological advances
will be evaluated. The achievements at the Tokyo Olympics will exemplify how the “new normal” of COVID
restrictions was accepted and conquered. Finally, mental health issues are covered, based on a documentary
created by Michael Phelps.

2. IMPROVEMENTS IN OLYMPIC WINNING PERFORMANCES
LESSONS FROM THE MEN’S WINNING VELOCITIES IN SWIMMING AT 100M AND 1500M
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Figure 1: Velocity of Male 100m and 1500m Olympic Swimming Champions (1908-2021)

Figure 1 shows the winning velocities for male Olympic champions from 1908 through the 2020/21 Olympics
at 100m (upper curve) and at 1500m (lower curve). The figure begins with 1908, the first year when swimming
was held in a pool at metric distances. Prior to 1908, Olympic swimming was held in Piraeus Harbor at Athens
in 1896, in the Seine River at Paris in 1900 and in a pool with distances in yards at St. Louis in 1904.

We see the consistent increase in winning velocities. Of particular interest is the competition in 1924. Johnny
Weissmuller (USA) won at 100m in 59s, becoming the first to win in under 1 minute. That was such a world-
wide phenomenon, it was one reason why Weissmuller was chosen to play Tarzan in the movies. Also in 1924,
Andrew (Boy) Charlton (Australia) became famous for winning at 1500m in a time of 20:06,5, nearly 2 minutes
better than the Olympic record of 22:00. Those two performances were so widely publicized and so spectacular,
how long did it take competitors to accept the new normal of such improved times? As we look at Figure 1, that
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new normal was accepted immediately. Velocities continued to improve immediately after 1924 at both
distances until the post WW2 Olympics of 1948, followed by generally increased velocities.

Now, start with Weissmuller’s 1924 velocity in the upper curve. Move harizontally for 80 years and you hit
the 1500m curve in 2004. In 2004, Grant Hackett (Australia) won the 1500m with a velocity of 58.9s per 100m.
That is, Hackett swam 15 times father than Weissmuller with a slightly faster velocity. Hackett’s winning 1500m
time of 14:43.40 was more than 5 minutes faster than Charlon in 1924. Hackett’s performance would have been
considered highly impossible in 1924, yet if you compare photos of Weissmuller, Charlton and Hackett, you see
little difference in physicality. Of course, Hackett embodies improvements in nutrition, training, coaching and
technique. Suits are similar. The human body has gracefully adapted to each new normal; hence there is strong
likelihood of continued improvement in the future.

We now take a comprehensive look at accumulated improvement for men and women, averaged for all
running, jumping and swimming events.

CUMULATIVE IMPROVEMENTS FOR OLYMPIC CHAMPIONS IN ATHLETICS AND SWIMMING

To calculate and plot the men’s and women’s cumulative improvements in Figure 2 (running), Figure 3
(jumping) and Figure 4 (swimming), the percent improvements over each Olympiad for each event in running,
jumping and swimming were found and then averaged for each Olympics by gender. The average percent
improvements per Olympiad (%I1/O) were then accumulated and plotted. For each figure, over-all average %I/O
and total cumulative percent improvement are shown by gender.

Women 0.7 %1/0, Cumulative 15%; Men 0.5 %1/0O, Cumulative 10%
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Figure 2: Cumulative % Improvement in Running for Male and Female Olympic Champions (1928-2021)

Figures 1-4 exhibit some changes in slope imposed on the athletes by various international happenings.
Figures 2-4 begin in 1928 when women first competed in athletics. Although women began competing in
swimming in 1912, starting with 1928 allows the comparison of men with women in running, jumping and
swimming over a common time frame.

From 1928 to 1936, the build-up to WW?2 featured rising nationalism resulting in a major focus on
Olympics and high rate of improvement. The post WW2 Olympics of 1948 showed some reduced
performances followed by a rebound in 1952. From 1956-1976 there was a Cold War emphasis on the
Olympics. The Western Bloc boycotted the 1980 Olympics while the Eastern Bloc boycotted in 1984, with
effects depending on which gender and bloc had been dominant in a sport. The Olympics of 1988 were
fully attended, but with significant use of performance-enhancing drugs. From 1992 to the present, anti-
drug efforts have been employed. Women generally improved more the men until the 1970s, as more
women entered sports and nutrition, training, equipment, coaching and technique equalized compared to
men until the rate of improvement of women and men equalized after the 1970s. For Figures 1-4, notice
how athletes accepted those driving forces as each new normal, causing another upward movement of
achieved performances due to self-improvement.

The improvements in running as shown in Figure 2 are less than those for jumping and swimming because
running is dominated by working directly against gravity while jumping and swimming have more techniques
to work with because the physics and kinesiology are more complex, Stefani (2008, 2014). In running, women
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achieved an average percent improvement per Olympiad (%I1/0) of 0.7%, creating a cumulative improvement
of 15% while men achieved an average %I/O of 0.5% with a cumulative improvement of 10%. The 5%
cumulative difference represents the gap women closed from 1928 through the 1970s.

If photographs are Googled for Elizabeth Robinson (USA) who won the women’s 100m in 1928 and Shelly
Ann Fraser-Price who was 12% faster while winning in 2008, 80 years later, one sees that the physicality is very
similar as was true comparing Weissmuller with Hackett.

Women 1.4 %1/0O, Cumulative 29%; Men 1.0 %1/0O, Cumulative 21%
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Figure 3: Cumulative % Improvement in Jumping for Male and Female Olympic Champions (1928-2021)

Figure 3 shows that in jumping, women achieved an average 1.4% %I/O with a cumulative improvement of
29%, while men achieved an average %I1/0 of 1.0% with a cumulative improvement of 21%. Those jumping
values are essentially twice those from running. According to the laws of physics, in jumping, Kinetic energy,
depending on the square of the vertical component of velocity, is converted into potential energy, depending on
the increase in the height of the centre of gravity. That increased height creates the vertical height or horizontal
distance achieved by the jumper. If velocity is multiplied by (1 + i) for a small increase i, then the jump should
increase by the square, (1 + i)% which is (1 + 2i + i?). Since i is small, i? can be ignored. The laws of physics
therefore indicate that an increase of i in velocity should increase the jump by 2i, or twice as much, which is the
relationship between the improvement parameters in Figures 2 and 3.

It is instructive to Google photos of Ethel Catherwood (Canada) the 1928 high jump winner and Tia Hellebaut
(Belgium) who won in 2008 with a 29% higher jump. Catherwood vaulted the bar, while Hellbaut used the much
more efficient Fosbury Flop. Both athletes have similar physicality. A jumper who vaults the bar must drive the
centre of gravity well above the bar while with the Fosbury Flop, the centre of gravity only rises to the height of
the bar of perhaps a bit lower, clearly a more efficient use of energy.

Women 1.6 %I1/0, 33% Cumulative; Men 1.4% 1/0O, 28% Cumulative
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Figure 4: Cumulative % Improvement in Swimming for Male and Female Olympic Champions (1928-2021)
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In Figure 5, female swimmers achieved an average 1.6 %I/O with a cumulative improvement of 33% while the
figures for men were 1.4% and 28% respectively. The laws of hydrodynamics and kinesiology provide more
techniques to exploit for improvement compared to jumping and running, Stefani (2008, 2014). If photographs
are Googled for Ethel Lackie, the 100m champion in 1924 and Jodie Henry (Australia) who won in 2004,
swimming 26% faster, again we see little difference in physicality Since there is no visible stress while
performing so much better than years before, we can be confident of continued improvement.

THE EFFECTIVENESS OF TECHNOLIGIAL ADVANCES

%I/O can be used to evaluate the relative effectiveness of a technological breakthrough for an event or events in
a given sport. The second panel of Table 1 shows the average %I/O before application of each of four
breakthroughs, starting with 1956 when the effects of WW2 had ended. The third panel shows the %1/O for the
Olympics when the breakthrough was first used. The fourth panel shows the percent increase in %I1/O on first
use.

The rowing ergometer, used for training, was by far the most effective, having increased %I/0 by 508% on
first use. International-competition exists just using the rowing ergometer. It is of interest to Google photographs
of Jack Beresford (Great Britain), the 1924 winner at 2000m single sculls and Olaf Tufte (Norway) the 2004
winner who was 13% faster. Tufte could train 24/7 in hostile Norwegian winter weather and became Olympic
champion in a country known for Winter Olympic excellence. Both athletes have similar physiques. The second
most effective breakthrough is the fibreglass pole (419%) which allows more kinetic energy to become lifting
potential energy, because the vaulter can run faster before bending the more flexible fibreglass pole. The Fosbury
Flop (83%) and Clap Skate (58%) are also noteworthy.

Technological Breakthrough Average %I1/0 1956- | %I/O on First Use % Change
Before (Year)

Rowing Ergometer 1.22 7.42 (1980) 508

(Rowing Training)

Fiberglass Pole 1.64 8.51 (1964) 419

(Pole Vault Equipment)

Fosbury Flop 2.25 4.12 83

(High Jump Technique) (1968 M, 1972 W)

Clap Skate 1.82 2.88(1998) 58

(Speed Skating Equipment)

Table 1: Technological Breakthroughs and Their Effectiveness at Improving Performances

3. THE TOKYO OLYMPICS

One of the greatest challenges to the athlete mindset of accepting the new normal and simply trying to improve
was the period before the Tokyo 2020/21 Olympics under COVID-induced restrictions. Training was
interrupted. Competitions were cancelled. The Tokyo 2020 Olympics was delayed by one year to 2021. To
further negatively affect the best intentions, there was a very real threat as the athletes left for Tokyo that the
Games would be cancelled. On one hand, it would have been understandable if the winners at Tokyo performed
worse that at Rio 2016. On the other hand, is the past history we have seen of the cumulative effect of self-
improvement over a wide range of past international conditions (new normals) imposed on athletes.

Tokyo 2020/21 vs Rio
2016

Rio 2016 vs London
2012

London 2012 vs Beijing
2008

Swimming

0.29%

0.18%

0.21%

Athletics

0.65%

0.31%

-0.26%

Table 2: Olympic Champion Percent I/O for Swimming and Athletics for Each of the Last Three Olympics

According to Table 2, the athletes met the challenge, Stefani (2021). Swimming winners performed an
average of 0.29% better at Tokyo than at Rio 2016. Athletics winners, in athletics events held on the track,
performed 0.65% better than at Rio 2016. Not only did the swimming and athletics winners do better than at
Rio, both of those improvements were more than achieved under normal conditions by the Rio 2016 winners
compared to London 2012 and more than achieved by the London winners in 2012 compared to Beijing 2008.
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The Olympic motto for the winners at Tokyo 2020/21 should be Faster, Higher, Stronger-Truly
Inspirational. | suggest the score at Tokyo was Athletes 1-COVID 0.

4. THE MENTAL HEALTH OF TOP ATHLETES
Recently, mental health degradation among top athletes has been widely discussed when tennis player Naomi
Osaka withdrew from some competitions, citing mental health issues, while being so widely respected that she
was chosen to light the Olympic Torch for Japan. The American gymnast Simone Biles withdrew from some
events at the Tokyo 2020/21 Games, citing mental health issues.

Michael Phelps, having openly discussed his own mental health issues, produced an in-depth documentary
called The Weight of Gold, Phelps (2020). Besides Phelps’ participation, the following 11 highly successful
athletes took part.

Jeremy Bloom, Alpine Skier Steven Holcomb, Bobsled Jeret Peterson, Alpine Skier
David Bodia, Diver Lolo Jones, Hurdler and Bobsled  Katie Uhlaender, Skeleton Sled
Sasha Cohen, Figure Skater Bode Miller, Alpine Skier Shaun White, Snowboard
Gracie Gold, Figure Skater Apolo Ohno, Short Track Skater

Each one of them shared a common experience in the documentary. They each said that when newly-emerging
athletes began to perform about as well as they had, each experienced loss of self-worth, leading to depression.
Ironically, they did not conceptualize that these new athletes were just part of the same continuity of sport by
which these superstars had themselves become established. For example, Michel Phelps has earned 28 Olympic
medals, 23 of which are gold. The second most gold medal earner has won 9, yet Phelps said he never felt
accomplished.

A number of them said that when their sports careers ended, so did the stipends by which they had lived
while competing. They said they felt lost without having acquired another profession,

In addition to the nutritionists, trainers, equipment procurers, coaches, technical analysis and sports
psychologists, all of whom work to help the athletes perform at their best, counsellors are needed to deal with
the athletes’ self-worth while in competition and with transitional planning for the future.

5. CONCLUSIONS

It is the mindset of young athletes living the real meaning of Citius, Altius, Fortius to try to improve, each using
the methods of their day (their new normal) each aided by similarly-minded nutritionists, trainers, coaches,
analysts and equipment makers. Winning performances keep getting better, simply due to the effects of that self-
improvement, across the spectrum of competition from the lowest to very highest at the Olympics. As
improvements accumulate over time, winning performances occur that would have been considered super-
human in the past. Mental health issues are of concern. Counsellors are needed to deal with the athletes’ self-
worth while in competition and with transitional planning for the future.
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Abstract

The shafts of most traditional polo mallets are made from the climbing stems of the rattan palm plant. This plant
is in serious decline due to previous decades of neglect, habitat loss and exploitation for furniture. Some attempts
have been made recently to replace the shaft of the traditional wooden mallet with human constructed materials.
However, elite players comment that these modern mallets lack the “playability” and “feel” of the traditional
mallets. Moreover, there is concern that use of modern composite materials could lead to more injury amongst
the players’ horses as they are sometimes struck on the stroke wind-up or follow-through. In this research, we
make an initial enquiry into the vibrational characteristics of the traditional mallet shaft. This is done by
modelling the shaft as a cantilevered visco-elastic beam and then representing this as a spring-damper-mass
system. The oscillation frequency and decay parameters of this simplified system are compared with
experimental data and this allows determination of the visco-elastic constant of the shaft without the mallet head.
Good agreement with experimental data for oscillation frequency and decay is obtained when heads of different
masses are then fixed to the same shaft. It is hoped that a sound theoretical understanding of the shaft’s
mechanical properties which determine its vibrational characteristics will lead to improved design of artificial
shafts. This should also result in better player acceptance of these shafts and improved animal welfare.

Keywords: Polo mallet, vibrational analysis, visco-elastic beam model

1. INTRODUCTION

The gold standard for field polo mallets is fabricated from a combination of materials. The choice of material
for: the head of the mallet is tipa, a south American hard wood; the shaft is manau cane, a genus of the rattan
palm, and the handle, which is a shaped wood laminate, bound with a cloth backed rubber compound (Woods,
n.d.).

Dwindling supply of ‘quality’ manau cane and the high variability of the root stock used for mallet shafts in
general has seen the quality and availability of gold standard mallets decline. This had led makers to consider
the use of other materials for the mallet shaft, including other species of cane which are considered inferior due
to inconsistent performance required for high level match play (Woods, G. personal communication, July 21,
2021).

One approach to ensure that both the level of performance and the consistency of product is met is using
engineered fibre composite materials. As with many sports, over the last 30 - 40 years, use of composite materials
has proven to be well received, especially with the savings in weight corresponding to improvements in athlete
performance (Easterling, 1993), (Jenkins, 2003). While this approach has worked for many sports there are
aspects of engineered materials that may negatively affect their adoption. This includes player perception or
“feel” of the equipment in use, which is a subjective consideration that is not easily quantified, as what
constitutes good “feel” can differ from one player to the next (Steele, Jones, Leaney, 2007), (Curtis, Heller,
Senior. 2021). Objective considerations include vibrational characteristics, strength, stiffness, impact response
and general material properties (Jones, Betzler, Wallace, Otto, 2019). While the objective considerations can be
readily assessed what we cannot currently determine is how these material properties combine to produce the
response or feel desired by the player.

Another aspect which is not easily determined and unique to field polo relates to the complex interactions seen
within the sport. For most sports activities where a ball (ball, puck, shuttle) is struck with a bat (bat, mallet, club,
racket) the bat may contact the ball or the ground. With polo there is the added interaction of the horse and
proximity of the opposing team and hence the bat may contact the ball, the ground, the horse, or an opposing
player.

While it is theoretically possible that composite materials can be engineered to produce superior player-ball
interactions, consideration also needs to be given for the horse and player interactions. This consideration, for
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the other interactions, is necessary to ensure that any equipment developed does not produce unsafe conditions
for the horse or an opposing player (Federation of international polo, 2018).

The gold standard polo mallets have been accepted for many years as they are universally considered to be safe
for both horses and players under the current rules of the sport (Federation of international polo, 2018). Research
is also underway to determine criteria that will ensure any future materials developed be as physically safe and
perform comparably, if not better, than the gold standard during match play.

This paper presents an investigation that sees testing of the gold standard mallet to collect vibrational response
data. These material properties will then be used to empirically validate the mathematical model produced to
predict the dynamic response based on a cantilevered visco-elastic beam.

2. METHODS

Experimental set-up

A gold standard mallet (George Wood, Wood Mallets, Hawkes Bay, New Zealand) was clamped by the handle
and then a load progressively applied, using the Lloyd LR30 universal tester, at a rate of 500 mm/min until the
vertical displacement was 200 mm. The load was then released, and the dynamic response of the shaft
measured by a three-axis accelerometer (AX3, 3-Axis Logging Accelerometer. Axivity Ltd, UK). The x-axis is
taken along the shaft (positive direction away from the handle), the y-axis perpendicular to the shaft (in the
horizontal plane) and the z-axis in the vertical direction (positive direction upwards). The sampling rate of the
accelerometer was 100 Hz and the measurable range + 16 g, where g is the gravitational acceleration constant
9.81 m/s?. The test was repeated 5 times after each loading once the shaft had come to rest.

Figure 1: The mallet shaft before (top) and during loading (bottom)
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The Fundamental Model

We modelled the mallet shaft as a cantilevered visco-elastic beam (Glirgdze, Dogruoglu & Zeren, 2007) with
the assumption that its visco-elastic properties fit the Kelvin-Voigt model (Perkins & Lach, 2011). The
bending rigidity, length, mass per unit length and visco-elastic constant of the beam material are

El, L,m and a respectively.

_______________ .______ M

< L
T -

Figure 2: Fundamental model of the polo mallet (in the experimental set-up we removed the head so M = 0)

The equation of motion for this clamped visco-elastic beam can be obtained from the literature (Banks &
Inman, 1991).

EIwV(x,t) + alwV'(x,t) + mw(x,t) =0

where [ is the moment of inertia of the beam section, w(x, t) represents the lateral displacement of the beam
at the location x and time t, and primes and dots denote partial derivatives with respect to x and t.

Of the four parameters involved in the governing equation of motion, the visco-elastic constant a is most
difficult to measure directly, so in this paper we use the data obtained from the experiment to “tune” this value.
Then we can predict the dynamic response of the mallet when heads of different masses are added to compare
with future experimental data. However, rather than numerically solving this complicated partial differential
equation, an alternative approach which involves representing the fundamental model by an “equivalent”
simplified model is now described.

The Simplified “Equivalent” Model

Girgdze (2005) has shown that it is possible to represent the vibrational system in Fig. 2 by an “equivalent”
simplified spring-damper-mass system as shown in Fig. 3. In the simplified system the value of the spring
constant and damping coefficient must be taken as

_ 3EI

k =

and ¢ =% (1)

L3 L3

respectively. The parameter § is the ratio of the beam mass (mL) to be added to the head mass (M) and is
determined by “matching” the first eigenvalue of the system represented in Figure 2 with the eigenvalue
obtained from the equivalent system in Figure 3. Further details on this “matching” procedure can be found in
Glrgoze, Dogruoglu & Zeren, 2007.

o(mL)

M

11 T
1T i

o]

Figure 3: Equivalent spring-mass-damper system that represents the model in Figure 2
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3. RESULTS

Experimental Data
In Figure 4 we plot the vertical (z-axis) acceleration in terms of g over one run. Note that the oscillation of the

shaft continues for about 12 seconds and the peak values for acceleration exceed the range of the sensors
(£16 g) at the start of the run. As expected, because of internal dampening in the shaft, the amplitude of the
oscillation decays until a final value of —g (representing downward acceleration due to gravity) is reached.

Vertical acceleration of shaft tip over one run
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Figure 4: Vertical acceleration of the shaft tip after the load is removed

In Figure 5 we focus on the first second of the oscillations for the second run. These show some discrepancies
in the acceleration values between sampling points in the initial period. For example, there is a decrease in
acceleration from 15.8 g to 12.6 g between times 15.63 s and 15.64 s but this increases again to 15.85 g at the
next sampling point of 15.65 s. This indicates that the sampling rate of 100 Hz, or the range of the sensor, may
be insufficient to accurately calculate the acceleration. However, as time progresses these unexpected
fluctuations appear to be resolved as seen from the smoother peaks and troughs from t = 16.2 s onwards.

Sample plot of data from second run for approx 1 s

16.9

acceleration (g)
o

time (s)

Figure 5: Vertical acceleration of the shaft tip in the second run after the load is removed

79



Analysis of simplified “equivalent” model
To proceed with analysis of the model in Figure 3 we need estimates of the parameters k, c and mL. As
mentioned previously, the visco-elastic constant « is very difficult to measure directly, so in this analysis we
tune the parameter ¢ (which depends on «) so that results from this simplified model match the experimental
data. We take values for the shaft of

L=11m,I =7.85x10"°m* E = 4.4 X 10° Pa, and mL (shaft mass) = 0.2 kg.
The value for moment of inertia I assumes the shaft is of uniform circular cross-section with radius r =
0.01 m and the Young’s modulus value for E assumes it is made of rattan cane (Du & Wang, 2016). These
values used in equation (1) give k = 78 Nm~! and ¢ = 1.77 X 10~8a Nsm™1. The value for § is obtained
from equation (20) in Giirgdze, Dogruoglu, & Zeren, (2007) which evaluates as 0.243. The simplified model
to be solved is then

(0.243)(0.2)w + 1.77 X 10~8a w + 78w = 0 2
or, on dividing through by the coefficient of the second derivative (0.0486),
W+ 3.64x107aw + 1605w =0 (3)

with the value of the visco-elastic constant a to be chosen so that solutions match the experimental data. We
are using w here to represent the lateral displacement of the shaft so the initial conditions for the simplified
model should be w(0) = —0.2 m and w(0) = 0. However, as noted in the experimental data, the early values
for the acceleration (and hence displacement) should be treated with caution because of the insufficient
sampling rate, so we focus mainly on matching the period and decay rate of the vibrations rather than exact

time correspondence. Solutions of equation (3) will be damped sinusoidal curves with period %’T (Bronson,
1973) where

4(1 605)—(3.64x10~7 )2
B="Y : @

3.64x107 " a

and damping factor e‘AtWhere A= . From Figure 5 the period of the oscillations is approximately

0.16 s hence B ~ — = 39.3. Solving equation (4) for the visco-elastic constant gives a value of @ =

427 x 107 and a value of A = 15.6. Hence over each period of the oscillation, the model predicts that the
peak value will decrease by a factor of e ~156(%-16) ~ 0,08. This decline in the peak values is clearly too rapid
so this indicates that this estimate of « is incorrect. If instead we choose a value for @ = 3 x 10° then the
values for A and B are 0.56 and 40 respectively, leading to a period of 0.157 s and damping factor (over one
period) of e~0-56(%-157) ~ (.92, This is clearly in much closer agreement with the data as shown in Figure 6,
which shows the second derivative of w (acceleration, in units of g) with time.

acceleration (g)
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Figure 6: Results from analysis of the simplified “equivalent” model in equation (3)
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For comparison purposes with the data, we also plot the model solution from ¢ = 3 to 5 s. This clearly shows
the period and damping rate with these parameter values is consistent with the data.

acceleration (g) 1

1]

.2 |38 3 i . 412 ) G 14 L0

24

51 U
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Figure 7: Close-up of simplified model solution from t=3 to 5 s showing good agreement with period and
damping factor of the data.

4. DISCUSSION

Replacing the fundamental model of the mallet shaft with the simplified “equivalent” model allows more
comprehensive understanding of the role that the material properties play in the resulting vibrations. Equation
(4) shows that the impact of the visco-elastic constant is much greater on the damping factor than the period of
vibrations. For example, a ten-fold decrease in a leads to only 1.5% decline in the period but an approximate
ten-fold increase in the damping factor. The simplified model will also allow similar sensitivity analyses of the
other material parameters E, I, m (mass per unit length) and a. This is useful as the values of these parameters
would vary quite widely because of natural variability in the rattan cane used in the shaft. Knowing how the
vibrational response of the shaft depends on the parameters will also lead to more efficient choice of new
composite materials, whose parameter values can then be chosen to provide the appropriate behaviour.

As a further example of the use of the simplified model, we examine the effect of including the mallet head,
which we take to be twice the mass of the shaft (so M = 0.4 kg in Fig. 3). Using Table 1 and Equation (20) from
Giirg6ze, Dogruoglu, & Zeren, (2007) the new value of § = 0.236 and fixing all other parameter values as
before, equation (2) now becomes

[(0.236)(0.2) + 0.4]w + 0.053 w + 78w = 0 (5)
The acceleration from solving (5) subject to w(0) = —0.2, w(0) = 0 is shown in Figure 8 fromt = 0to 10 s.

In this case, the period has increased to 0.48 s and the damping factor over each period is reduced to
e~00593(048) ~ .97 which means the vibrations will persist for much longer.
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Figure 8: Effect of adding a head mass of M = 0.4 kg to the previous shaft

Whilst analysis of the vibrational characteristics of the polo mallet is important, it is only a first step in the
classification and design of future mallets which might be made from composite materials. Also requiring
study are the impact and reaction forces when striking the ball, which are very different from the quasi-static
loading and clamped handle considered in this paper.

5. CONCLUSIONS

By using a simplified model of a visco-elastic beam available in the literature, we can determine the vibrational
response of a polo mallet shaft with variable material parameters (Young’s modulus, moment of inertia, mass
per unit length and visco-elastic constant). We found that the visco-elastic constant has little effect on the period
of vibration but greatly affects the damping factor. We can also easily predict the response when heads of
different masses are attached to the shaft. Preliminary results show the period will increase and damping factor
will decrease with increasing head mass. This study should lead to more informed consideration of alternative
future materials for constructing polo mallets, given the increasing scarcity of traditional materials. Similar
modelling approaches will hopefully also be useful when considering striking the ball with the mallet.
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Abstract

“The demography of New Zealand is changing, with major implications for rugby, especially for player
participation (Spoonley, 2021).” To understand the implications, the challenge for sports administrators is to
first quantify overarching demographic trends and then overlay and isolate the impacts this has on the
participating population. Dissanayake et. al. (2020) found that socio-economic factors played a role in junior
players leaving rugby in Auckland.

In this paper, this concept of demographic change in New Zealand and the subsequent impact on junior
participation is extended further to utilise Explainable Artificial Intelligence (xAl). The impacts of socio-
economic changes within the Wellington Region and the impact this has on junior rugby at a team level are
explored.

The basis of the XAl in this instance is to meaningfully group and adapt to the latent structures for those
groupings based on socio-economic attributes. Constrained spectral clustering is used to group and explain
similar small areas based on attributes such as deprivation, educational attainment, civic compliance and
discretionary spend. Given the dynamic nature of the underlying data sources, this segmentation is updated
regularly. This enables socio-economic change to be identified in a meaningfully relevant timeframe.

To explore the contemporaneous relationship with player participation, an inverse Huff model (Ward et. al.,
2020) is used to distribute players in the vicinity of each club. Exploring the change in playing numbers over a
two-year period, clubs in neighbourhoods which improved socio-economically also grew in playing numbers.

These findings have important implications for growing the game in New Zealand and can be used to help
identify, not only new pools of junior players, but also sponsorship and advertising opportunities.

Keywords: Spectral Clustering, Churn

1. INTRODUCTION

Physical activity has many benefits for children, including improved academic performance, better cognition,
elevated mood, and increased self-esteem (Rasmussen and Laumann, 2013). Junior sport plays a large part in
creating an active and healthy lifestyle for children in New Zealand. According to Ministry of Health (2021), to
maintain a healthy lifestyle, children should complete 1 hour of moderate or vigorous physical activity spread
over each day”. Participation in junior sport allows for this recommendation to be more routinely met.

In a survey done by Sport NZ (2019), it was found that only 58% of young people met the current
recommended level of exercise. Of the young people who were under the recommended level of exercise, a large
number did not lack the motivation to exercise, meaning there are other factors at play. The survey revealed that
gender and deprivation impacted the likelihood of a young person being in this position.

Rugby has been a popular sport in New Zealand for many years, but in recent times, the number of junior
players leaving the sport has increased (Dissanayake et al., 2020). Before making policy decisions in the hope
of altering the current trend, it is important to understand what is driving this movement away from the sport.

Junior rugby in Wellington ranges from under 5 through to under 13 grades. It transitions from Rippa rugby
in the younger grades to large team format tackle rugby in older grades. The players can enter 1 of 20 clubs
across the Wellington region, giving options for a range of geographic locations.

Factors other than a child’s interest in sport contributes to whether used to calthey can participate. There are
many factors that can influence the participation of children in sport, including deprivation, support, accessibility
and parental sports preference (Sport NZ, 2019; Taks and Scheerder, 2006). When specifically looking at rugby
it was found that weight limits (grades with a maximum player weight), team size, rugby sentiment portrayed
by the media, and deprivation all play a role is influencing participation (Dissanayake et al., 2020).

A study in Germany by Steinmayr et al. (2011) investigated the relationship between youth participation in
sport, and their distance from sports clubs. It showed that up to a certain point, distance did not affect the rate of
participation, and beyond that point, participation fell at a linear rate. Clubs that offered different types of
facilities differed from each other, among clubs that had a sports ground, participation was constant at about
50% until 2Km, after which it fell linearly to about 40% at 6Km.

DOT’s Dynamic Deprivation Index (DDI) and Unique Segmentation (US) tool reflect changes in the
communities throughout New Zealand (NZ). The DDI is an extension of the Socio-economic Deprivation
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Indexes (NZDep) by Otago University, a detailed and resource intensive study into NZ deprivation (Ward et al.,
2019). The DDI offers deprivation data at a much higher temporal granularity than NZDEP, but at the expense
of the detail in the deprivation estimates. Us looks to split NZ into 16 unique segments, based on approximately
200 variables. These 200 variables for both clustering and descriptive purposes. The variables include attributes
such as deprivation, urbanality, electricity consumption and spending habits.

Building on an implementation of the Huff model by Ward et al. (2019), the study aims to propose a method
of estimating the spatial distribution of junior rugby players given the number of players at each rugby club. As
part of this method, a distance score function is presented as an option to implement user defined distance-
participation relationships. While the player estimations cannot be verified at this stage, it is thought that the
framework can be calibrated in future studies.

Using the junior rugby player estimates, the study aims to compare the DDI and Us segments as predictors
of participation. Participation is measured by modelling the expected number of players in an area after adjusting
for the junior population (rate of participation). The study also aims to identify trends in junior rugby
participation over space and time after adjusting for changes in other variables.

2. JUNIOR PARTICIPATION DATA

Data on the number of juniors participating at each club were collected from 2019 to 2021 via publicly available
draws (see: https://www.wrfu.co.nz/junior/draws/). The address for each club is known. The study used SA1
and SA2 polygon data, originally downloaded from Land Information NZ (LINZ). This was downloaded in the
New Zealand Transverse Mercator (NZTM) projection and contained the respective area code for each polygon.
To find the distances between each SA2 and rugby club, network distances between SA1 pairs were used. When
calculating these distances, the central point of reference for each SA1 was the average of the contained
meshblock centroids. The average SA1 network distance within each SA2 was then calculated to fit with the
project data.

Rugby club points were created by using DOT’s proprietary geocoder. The given World Geodetic System
(WGS84) latitude and longitude coordinates were used to create the rugby club points, which were then projected
to NZTM. The points were intersected with the SA1 and SA2 polygons to tag each club with the underlying area
code. The network distances could then be joined to the club points, giving the distance between a given club
and SA2. When estimating the player count per club, it was important to have the counts split out by grade. Not
only because the team size varies depending on grade, but also the distribution of number of teams per grade
varies across different clubs. To find an estimate of player numbers, club team counts were multiplied by the
team size for the given grades. Up to the end of the 2021 season, WRFU grades were based on the age of the
participant as of 1% January. Under 7 (years of age) grades and below have 7 players. Grades up to Under 11
have 10 aside. Finally, the Under 12 & 13 grades play with 15 per team. A flat 3 substitute players were added
to each of these numbers.

Annual population estimates for 0-14 year-olds at a SA2 level were obtained from Stats NZ. To convert
these figures to a junior rugby age range (5 to 13), the counts were multiplied by 9/14 (0.64). The SA2 junior
player count estimates were calculated by multiplying P(Area = i|Club = j) by the N;, the number of players at
club j.

2. DATA PREPARATION WITH THE INVERSE HUFF MODEL

To explore the contemporaneous relationship with player participation, an inverse Huff model (Ward et. al.,
2020) is used to distribute players in the vicinity of each club. The steps in construction of this model for junior
rugby participation are outlined at follows.

ATTRACTIVENESS
The junior population at each SA2 was used as the attractiveness parameter, Ai. This specification ensures that
players are distributed to SA2 proportional to their population.

DISTANCE

Steinmayr et. al. (2011) observed that distance is not a factor in participation rates up until a certain point
(threshold distance), after which, participation falls linearly. A distance score function, Dscore Was created to
emulate this relationship. There are 2 parts to the function: (1) convert each distance, d, to its equivalent
participation rate (%) in Steinmayr et. al. (2011), (2) convert each participation rate to a distance score (so that
a lower participation rate corresponds to a higher distance). Dscore assumes a constant (flat) rate of participation
until a threshold point, Tqis;, whereafter, participation falls at a linear rate until a maximum distance Mgis:. Based
on the Steinmayr et. al. (2011) findings of clubs with sports grounds, the following assumptions were made: (1)
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New Zealand and German youth exhibit similar behaviours around sport participation and distance from clubs,
(2) the participation rate is a constant 50% until 2 Km, (3) after 2 Km, participation falls linearly to 40% at 6
Km.

100 — T}g, if d <= Tj;u
Dicore(d) = § 100 = (Trse — (Trate — Migre) i) if Tyip < d < My (1)
0 if d > My,

Where:

d = distance to club

Dscore = Distance score

Taist = Threshold distance (2 Km)

Trate = Estimated participation rate (%) up till threshold (50%)

Muist = Maximum distance included (6 Km)

Mt = Estimated participation rate (%) at maximum distance (40%)

While the parameters defined in Dscore are a good starting point, they rely on several assumptions and are likely
to differ in practice. To show how sensitive Dscore iS to changes in parameters, Dscore Was run over a grid of
parameters, and Huff models were run for each iteration. Knowing that sport participation tends to vary with
deprivation level (Dissanayake et. al., 2020; Sport NZ, 2019), the correlation between the raw deprivation score,
used to derive the DDI, and participation rate (as predicted by the inverse Huff model) were calculated. Mg has
a significant impact on the correlation, R2 ~ —0.22 around 5-6 Km compared to R2 ~ —0.05 at 8 Km. Ty and
M- had a relatively small but noticeable effect, while Tqist had very little impact

WEIGHTING EXPONENTS

An attractiveness exponent o, = 1 was used under the assumption that the population of an area does not change
the rate at which juniors participate in sport. To retain the relationship created using the distance score function,
Dscore, the distance exponent was set to = 1.

3. DIMENSION REDUCTION USING XAl

Explainable Al (xAl) is artificial intelligence (Al) in which the results of the solution can be understood by
humans. To ensure humans can understand what the Al is trying to do, the outputs must be transparent, robust,
meaningful and connect to the real world. This builds trust. Consequently, an approach is outlined that
dynamically adapts to latent data changes yet remains interpretable by design.

DATA PREPARATION
Here, the approach used to develop the proprietary Unique Segmentation tool (Us) is outlined
(https://dotlovesdata.com/products/us/).

The purpose of the segmentation in Us involves using a variety of datasets to describe different areas of
New Zealand (at an SAL level) and cluster them into several distinct groups that can be used to represent the
diverse population of New Zealand in a way that is more targetable and actionable. This required the creation of
a clustering model that would take all data and cluster in a dynamic way such that the resulting clusters would
be truly representative of different communities, and their evolution, across the country.

The first major step involved collecting the enormous amount of data necessary for such a task. Many
datasets were used, including deprivation metrics such as education, income, and housing; urbanality metrics
such as proximity to urban areas and density; electoral metrics such as voter turnout, party votes, and referendum
votes; spending metrics such as electricity and luxury goods; and a variety of data pulled from the New Zealand
Census of Population and Dwellings (see: https://www.stats.govt.nz/topics/census).

Importantly, because each dataset is organised differently, they are adjusted to represent average values for
individual SAls. The importance of aggregating datasets to this level is so that the clustering is not based on
individually identifiable data, but rather represents the small but sufficiently distinct general area. The SA1, or
Statistical Area 1 scheme, was introduced by Statistics New Zealand as part of the Statistical Standard for
Geographic Areas 2018 (SSGA18) (StatsNZ, 2017). SAL is intended to allow the release of more detailed
information about demographic characteristics than can be made available at the smaller meshblock level.
Constructed from combinations of meshblocks, SA1s generally have a population range of around 100 to 200
people, and at most approximately 500 people.

Once the data has been aggregated to the SAL level, the resulting dataset has around 200 columns. Each
column represents a distinct feature, so it is then necessary to reduce the dimensionality of the dataset before
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clustering. First, variables such as those related to cultural and ethnic groups must be omitted from the clustering
dataset to avoid racial bias and potential racial targeting from the segments. If there exist differences in lifestyle
and behaviour between different cultural groups, these will naturally show up throughout the other variables in
the dataset, however it is important not to artificially introduce biases such as these into the model. After such
variables have been omitted, the dataset is still very large, so further dimensionality reduction is applied using
principal component analysis (PCA). With the size of the dataset in the initial version of Us, PCA can explain
approximately 70% of the variation in the dataset using eight principal components, thereafter additional
principal components explain less than 30% of the variance within the dataset. With the dataset transformed to
these principal components, it is then ready to be clustered.

CLUSTERING DATA

A key challenge is constraining the number of clusters, as having two few or too many will result in clusters that
are either too general or too specific, as well as constrain the size of the clusters such that each represents roughly
equivalent proportions of the overall population. This attribute is often required for geo-targeting in market
applications. Consequently, size constrained clustering methods are investigated.

Raykov, Boukouvalas, Baig, & Little (2016) discuss that the k-means algorithm is one of the most
commonly used clustering algorithms in current use, due to its simplicity. However, this simplicity entails certain
restrictive assumptions about the data, the negative consequences of which are not always immediately apparent.
Zelnik-Manor & Perona (2004) also note the benefits and shortcomings of common clustering methods such as
k-means, explaining that these methods typically estimate explicit models and return high quality results when
the data is organised according to the assumed models. They caution that when data is arranged in more complex
and unknown shapes, these models can fall short. Héppner & Klawonn (2008) additionally note that k-means
generally tends towards clusters of approximately equal size, but only when the data density is uniform, again
echoing that same sentiment in that it works well with the optimal dataset. But datasets can very often be less
than optimal, and Hoppner & Klawonn explain that clusters can become very imbalanced in their coverage of
the data points, in these instances.

Zelnik-Manor & Perona (2004)’s recommendation in such instances is spectral clustering, which, rather
than estimating explicit models of the data distribution, can perform a spectral analysis of point-to-point
similarities within the data matrix. Li, Wang, Xu, & Yang (2018) also hold spectral clustering in high regard,
regarding it as the most effective clustering algorithm due to its ability to deal with non-convex sample space
distribution problems.
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Figure 1. Results of clustering on dummy datasets. The first row shows the results of k-means clustering,
while the second row shows the results of spectral clustering.
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As demonstrated in Figure 1, spectral clustering is capable of clustering datasets that consist of more
complex shapes, where traditional k-means falls short.

Li, Wang, Xu, & Yang (2018) discuss further how spectral clustering could be adapted into a constrained
model. They explain that spectral clustering being an unsupervised learning method means that compared with
the supervised learning it lacks the information of class labels, but that pairwise constraints can, in some cases,
be obtained and encoded into the spectral clustering to get better results. With this, we can put together the
Constrained Spectral Clustering algorithm:

Input. Dataset X={xi,...,xn}, number of clusters C, pairwise constraints

Output. The c clusters of dataset X

1. Compute the local scale o, for each point x_ € X such that ¢, = dix, x ), where x_ is the K:F’ neighbour of
point x. NB: Zelnik-Manor & Perona explain that the selection of K iz independent of =cale and is a

function of the data dimension of the embedding space, and suggest a value of K = 7, which gave good
results even for high-dimensional data.

d(x.x)

[B]

Form the locally scaled affinity matrix AR such that A, = exp{— — ) forizjand A = 0.

Modify the affinity matrix A by the pairwize constraints.

(]

4. Define D to be the diagonal matrix such that D = ¥ A , and construct the symmetric normalized
=

Laplacian matrix L = D (D — A)D .
5. Find the C largest eigenvectors of L and form the matrix ¢ = {51 ..... g,}E?&m'__ where € iz the largest

possible group aumber.
6. Eecover the rotation R which best aligns G's columns with the canonical coordinate system vaing the

incremental sradient descent scheme, and construct the matrix ZER  after rotating the eigenvector matrix
G with .
Take the alignment result £ of the top € eigenvectors and assign the original point x to cluster ¢ if and only

if max (Z£.7) = Z . Ifthe data is highly noisy, nse this to initialise k-means clustering on the rows of Z.

CHOOSING K

Zelnik-Manor & Perona (2004) mention that when choosing the number of clusters, that the process is usually
manual, and that there has been limited research as to how one might determine this automatically. They discuss
analysing the eigenvalues of the affinity matrix as an intuitive solution to finding an optimal number of clusters
but propose an alternative method: using the initial constrained spectral clustering algorithm with a defined
maximum number of clusters C, and grading the cost of the alignment for each group number up to C, treating
the largest group number with minimal alignment cost to be the optimal number of clusters. They define a cost
function:

cost = % such that M. = max T (2)

4

I
T

and Let ZERnxC is the matrix obtained after rotating the eigenvector matrix G.
Adding this into our algorithm above, starting from step 6:
6. Recover the rotation R which best aligns G's columns with the canonical coordinate system uvsing the

: ; S nxl : . :
incremental gradient descent scheme, and construct the matrix ZeR - after rotating the eigenvector matrix
G with R.

c =
P

such that M_= max Z_. and set the final group number € to be the largest group number with minimal

i by =

Grade the cost of the alignment for each group number up to C according to the equation cost =

alignment cost.
8. Take the alignment result Z of the top C___

Dast

eigenvectors and assign the original point x_ to cluster ¢ if and

only if max (Z ) = Z_ . If the data is highly noizy, use this to initialize k-means clustering on the rows

of Z.
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In testing, C=16 seemed to provide optimal results. This result was further checked against each model’s
distortion, as well as its Bayesian information criterion (BIC) (Schwarz, 1978), a criterion for model selection
among a finite set of models. The BIC is formally defined as: BIC=k(n)-2(L), such that L=p(x|6,M) (the
maximized value of the likelihood function of the model M), x is the observed data, n is the number of data
points in x, and k is the number of parameters estimated by the model.

C=16 minimises BIC and distortion without being far beyond the point of diminishing returns. However,
while this may well change in updates to the clustering as the input dataset evolves, the results indicate that this
is a suitable number of clusters for our model in this version.

MORE URBAN

A3AId3A 0N

Figure 2: Overview of the DOT Us segments arranged by deprivation and urbanality.

4. METHOD

A Generalised Estimating Equation (GEE) with a Poisson link function was used to model the number of junior
rugby players in each SA1. To account for varying SA1 populations, the estimated junior SA1 population was
used as an offset term in the model. The SA1 code was used as the ID of each cluster in the model, while ‘Year”
identified the order of the repeated observations in each cluster.

Given that there are 16 clusters in the data set, it is important to be mindful of the number of parameters in
each model. 3 groups of models were fitted, each corresponding to three core predictors: deprivation score (DS),
DDI, or Us segment. Theses variables were not used in the same model due to the level of correlation they have
with each other as DS is used to create DDI which in turn is a core component in Us.

Variables used for predicting the number of junior rugby players in each SA1 were:

DS: Deprivation score used to derive the DDI

DDI: Levels 1 to 10 from the DDI, with ”10” used as reference level (most deprived)

Us: 16 Us letter codes segment “M” from 2021 used as reference level (most central segment
given urbanality and deprivation)

Min Dist: The distance to the nearest club (Km)

TA: The Territorial Authority, Wellington City used as the reference level

Year: Year of the rugby season

Within each of the 3 groups, 4 models were fitted for a total of 12 models (13 including the null model).
Modelling was carried out using the R package ‘geepack’ by Halekoh and Hgjsgaard (2006). Within the
‘geeglm’ function, ‘SA1 Code’ was used as the ID variable to identify repeated measures, while “Year’ was used
to identify the order of the repeated measures. In each model, ‘log(Junior pop)’ is present as the offset term,
accounting for the varying junior populations within each SA2. Models 1 to 4 were fitted for each core predictor
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(DS, DDI, and Us). These models are later referred to as Model-0, Model-DS1, Model-DS2, ..., Model-US3 and
Model-US4:

Model 0: log(N Players) = log(Junior Pop)

Model 1: log(N Players) = log(Junior Pop) + Core Predictor

Model 2: log(N Players) = log(Junior Pop) + Core Predictor + Min Dist

Model 3: log(N Players) = log(Junior Pop) + Core Predictor + Min Dist

Model 4: log(N Players) = log(Junior Pop) + Core Predictor + Min Dist + TA + Year

A first-order autoregressive, AR(1), correlation structure was specified, as consecutive observations were
generally more similar than observations that were 2 years apart.

Using ‘geepack’, the quasi-likelihood under the independence model information criterion (QIC) was
calculated to compare the performance of each model (Pan, 2001). For the sake of comparison between the core
predictors, one DS/DDI model and one Us model were selected for evaluation.

When using GEEs, the standard observed versus predicted residuals can be used, but the variance is a
function of the mean response (link function) (Fitzmaurice et al., 2011). To avoid this and make comparison
easier, the Pearson residuals can be used.

5. RESULTS
Table 3 is a summary of Model-DI3 and Model-US3, showing estimates, rate ratios (RR) and the corresponding
95% confidence intervals (CI).

Variable I Parameter | Estimate | RR | RR 95% CI | Sig.
Model-DI3
Intercept Intercept -3.667 0.026 | (0.017, 0.038) | ***
DDI 1 0.899 2457 | (L.771, 3.41) | ***
DDI 2 0.839 2.313 | (1.668, 3.209) | *+*
DDI 3 0.785 2.193 [ (1.565, 3.074) | ***
DDI 1 0.842 2.321 | (1.67, 3.225) | ***
DDI 5 0.935 2.546 | (1.832, 3.539) | ***
DDI 6 0.848 2.335 | (1.648, 3.31) | ***
DDI 7 0.791 2.206 | (1.524, 3.193) | ¥+*
DDI 8 0.688 1.991 | (1.373, 2.886) | ***
DDI 9 0.025 1.026 | (0818, 1.28] })
Min. Distance Min. Distance -0.099 0.905 (UR'H 0.984) | *
TA | Kapiti Coast District 0.413 1.512 | (1.257, 1.818) | ***
TA Lower Hutt City 0.256 1.292 | (1. lIH 1601y | *
TA Porirua City 0.931 2538 | (1.8, 3.578) | ¥**
TA Upper Hutt City 0.418 1.519 (1_2-1, 1.861) | ***
Model-US3
Intercept Intercept -3.016 0.049 | (0.034, 0.071) | ***
US Segment B 0.066 L.OG8 | (0.752, 1.518)
US Segment C 0.481 1L.617 | (1.196, 2.186) | **
US Segment F 0.059 1.060 | (0.745, 1.509)
US Segment J 0.330 1.391 | (0.962, 2.012) .
US Segment L 0.417 1.518 | (1.074, 2.145) | *
US Segment N 0.032 1.033 | (0.772, 1.381)
US Segment P 0.423 1.527 | (1.074, 2.171) | *
US Segment Q) 0.054 1.055 | (0.663, 1.678)
US Segment S 0.464 1.591 | (1.141, 2.219) | **
US Segment v -0.473 0.623 [ (0.428, 0.907) | *
US Segment W -0.809 0.445 | (0.305, 0.651) | ***
Min. Distance Min. Distance -0.070 0.932 [ (0.851, 1.022)
TA | Kapiti Coast District 0.193 1.213 | (D.856, 1.718)
TA Lower Hutt City 0.218 1.244 | (0.913, 1.695)
TA Porirua City 0.851 2.343 | (1.511, 3.631) | ***
TA Upper Hutt City 0.504 L6356 | (1.168, 2.349) | **

Table 1: Model summaries showing parameter estimates and significance from Model-DI3 and Model-US3
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Not all parameters were significant at a 95% significance level but were included due to the reduction QICC that
they provided and assistance in interpretability. Model-DDI3 shows that DDI levels 1 to 8 are significantly
different from levels 9 and 10 (which are not significantly different from each other). While the RR for each
level from 1 to 8 are very similar (relative to their ClI), a DDI of 5 is associated with the largest RR. This means
SAlswith a DDI of 5 have 2.546 (1.832, 3.539) times the rate of junior rugby participation compared with SA1s
with a DDI of 10. For each 1 Km a SA1 is from the nearest club, the SA1 has 0.905 (0.833, 0.984) times the rate
of junior rugby participation. The RR for each of the TAs are significantly different from Wellington City, with
Porirua City being the most different. Porirua City has 2.538 (1.8, 3.578) times the rate of participation compared
with Wellington City. Looking at Model-US3, Us codes “C” and “W” tell a similar story to DDI results seen in
Model-DDI3. Segments “C” and “W” are at opposing ends of the deprivation scale, while having similar
urbanality (Figure 1). Compared to segment “M”, segment “C” SA1s have 1.617 (1.196, 2.186) times the rate
of participation, while segment “W” SA2s have 0.445 (0.305, 0.651). Interestingly, segment “S”, has a RR of
1.591 (1.141, 2.219) despite being much closer to “W” than “C” in terms of deprivation. Porirua and Upper Hutt
City have significantly higher rates of participation compared with Wellington City. Porirua City and has the
largest difference, having 2.343 (1.511, 3.631) times the participation.

6. DISCUSSION

Model-DDI3 and Model-US3 indicate that SA2s with high levels of deprivation are associated with a lower rate
of junior rugby participation. This aligns with the findings from Dissanayake et al. (2020) who found that
deprivation had a negative effect of junior participation in sport. In both models it seems apparent that the
relationship between deprivation and participation in nonlinear. In both cases, participation was only negatively
affected at very high levels of deprivation and seemed to be similar at deprivation levels below the extreme.

In the case of the DDI and Us models, the QIC indicated that “Year’ was not useful, given that the models
contained all other variables. This appears to contradict one of the motivations of the study, which was
understanding drivers of the reduction in rugby participation. It may seem like a straightforward conclusion, but
it would fail to account for the temporal variation considered by DS/DDI. Another consideration is that the study
only contains 3 data points across time, making any evidence around this point weak. There was little variation
in the Us segments at SA2 for this period

The ‘TA’ variable allowed for estimates to vary across space, revealing a trend that reflects negatively upon
rugby participation within Wellington City. Model-DDI3 indicates that each of the 4 other TAs have a higher
rate of junior rugby participation, while Model-US3 indicates the same but only in Porirua and Upper Hutt City.
Demographic, socio-economic and cultural factors are known to effect participation in junior sport (Taks and
Scheerder, 2006), future work may be needed to explain how this relates to the differing participation rates
throughout the Wellington Region.

A key limitation of the study is that the number of players that are estimated to come from different SA2s
cannot be verified. In its current state, the GEE is trying to predict the output of the IHM, as opposed a true
player count per SA2. It is thought the IHM estimations can be calibrated in further studies to acquire more
robust estimations.

IHM is not typically used for distributing individuals out from central points. This method is still in its
infancy, having only been presented by Ward et al. (2018, 2019, 2020).

While the GEE accounts for the correlation within repeated measures of SA2s, spatial autocorrelation has
not been accounted for. This adds to the caution needed when interpreting findings from this study, as parameter
estimates could be inflated and standard error estimates may be optimistically small (Mets et al., 2017).

While not presented in detail here, in 2019 and 2020, the Pearson residuals have noticeable geographical
pockets where the model does not fit well. This is particularly noticeable in 2021, around Khandallah, where
there are areas of homogeneous negative residuals. Khandallah is a north-eastern suburb of Wellington,
approximately 4km from the Central Business District. The two nearest junior clubs are Wests (6.3Km) and
Johnsonville\Newlands (4.3Km). The centre of Khandallah is 550m from Nairnville Park, the home ground of
Old Boys University Rugby Club, who folded their junior club in 2021. Consequently, these negative residuals
indicate that this part of Wellington is systematically underserviced. This serves as a reminder to administrators
about the importance of having access to clubs, with the distance parameter from the IHM helping to inform
optimal distribution of clubs given population levels.

7. CONCLUSIONS

Rugby is a popular sport in NZ and a source of physical exercise in a time where youth struggle to meet physical
exercise recommendations. During falling junior rugby participation, studies have identified relationships
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between junior sport participation is affected by socio-economic, geographical and cultural variables. An IHM
was used to estimate the number of junior rugby players in each SA2 across the Wellington region. The estimated
player numbers were modelled by the DDI and Us, as well as spatiotemporal variables. High levels of
deprivation were found to have a negative effect on participation rates while SA2s within Wellington City were
associated with a lower rate of participation compared with the other TAs. A statistically significant trend across
time was not found, but this may have been due to a lack of repeated measures. The study has some limitations
around certainty of estimates but provides a start for future work.

References

Ballinger., G. A. (2004). Using generalized estimating equations for longitudinal data analysis.

Dissanayake, H., Bracewell, P.J., Trowland, H.E., & Campbell E.C. (2020). Latent drivers of player retention in junior rugby.
Proceedings of the 15th Australian Conference on Mathematics and Computers in Sports. Ray Stefani & Adrian Schembri
eds. Wellington, New Zealand ANZIAM Mathsport. pp. 92-97.

Fitzmaurice, G.M., Laird, N. M., & Ware. J. H. (2011). Generalized Estimating. Wiley.

Ghisletta, P., Spini, D., Riand, F. J., Vascotto, B., Cordonier, C. & Lalive., C. J. (2004). An introduction to generalized
estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. Journal
of Educational and Behavioral Statistics Winter, 29:421-437, 2004.

Halekoh U., & Hgjsgaard, S. (2006). The R package geepack for generalized estimating equations. Journal of Statistical
Software.

Huff. D. L. (1964). Defining and estimating a trading area. Journal of Marketing, 28:34-38.

Huff. D. L. (1963). A probabilistic analysis of shopping center trade areas. Land Economics, 39:81-90.

Liang K.-Y., & Zeger, S. L (2017). Longitudinal data analysis using generalized linear models. Biometrika, 73:13-22, 1986.

Mets, K. D., Armenteras, D. & Davalos, L. M. (2017) Spatial autocorrelation reduces model precision and predictive power
in deforestation analyses. Ecosphere, 8, 5.

Ministry of Health. (2021) How much activity is recommended? URL https://www.health.govt.nz/your-health/healthy-
living/food-activity-and-sleep/physical-activity/how-much-activity-recommended.

Pan. W. (2001). Akaike’s information criterion in generalized estimating equations. Biometrics, 57:120-125.

Rasmussen, M., & Laumann, K. (2013). The academic and psychological benefits of exercise in healthy children and
adolescents. European Journal of Psychology of Education, 28:945-962, 9.

Spoonley, P. (2021, May 14). Changing face of NZ poses big challenges for the future of rugby. Stuff.co.nz. Available at:
https://www.stuff.co.nz/sport/rugby/opinion/125061179/changing-face-of-nz-poses-big-challenges-for-the-future-of-
rugby (accessed 22 February 2022).

Sport NZ (2019). Determinants of physical activity in young people.

Taks M., & Scheerder. J. (2006). Youth sports participation styles and market segmentation profiles: Evidence and
applications. European Sport Management Quarterly, 6:85-121.

Ward, A.D., Bracewell, P.J., Cui, Y. (2018). Tavern proximity, tavern density and socio-economic status as predictors of
assault occurrence within New Zealand: a temporal comparison. Kotuitui: New Zealand Journal of Social Sciences. 13(1)
pp. 82-98.

Ward, A.D., Mclvor, J.T., & Bracewell, P.J. (2020) The geographic distribution of gaming machine proceeds in New
Zealand, Kotuitui: New Zealand Journal of Social Sciences Online, 15(1), pp. 54-74.

Ward, A. D., Trowland, H. & Bracewell, P.J (2019). The Dynamic Deprivation Index: measuring relative socio-economic
deprivation in NZ on a monthly basis. Kotuitui: New Zealand Journal of Social Sciences, 14:157-176, 1.

Hoppner, F., & Klawonn, F. (2008). Clustering with size constraints. In Computational Intelligence Paradigms (pp. 167-
180). Springer, Berlin, Heidelberg.

Li, L., Wang, S., Xu, S., & Yang, Y. (2018). Constrained spectral clustering using Nystrém method. Procedia Computer
Science, 129, 9-15.

Raykov, Y. P., Boukouvalas, A., Baig, F., & Little, M. A. (2016). What to do when K-means clustering fails: a simple yet
principled alternative algorithm. PloS one, 11(9), e0162259.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461-464.

Stats NZ (2017). Statistical standard for geographic areas 2018. Retrieved from www.stats.govt.nz.

Steinmayr, A., Felfe, C., & Lechner, M. (2011). The closer the sportier? children’s sports activity and their distance to sports
facilities. European Review of Aging and Physical Activity, 8:67-82, 10.

Wellington Rugby Football Union (2019). Junior rugby team handbook.

Wheeler., J. O. (2005). Geography. In K. Kempf-Leonard, editor, Encyclopedia of Social Measurement, pages 115-123.
Elsevier, New York.

Zelnik-Manor, L., & Perona, P. (2004). Self-tuning spectral clustering. Proceedings of the 18th Annual Conference on Neural
Information Processing Systems (NIPS’04).

Zorn. C. J. W. (2001). Generalized estimating equation models for correlated data: A review with applications.

92



MODELLING HUMAN GAIT USING A NONLINEAR DIFFERENTIAL
EQUATION

b

Jelena Schmalz?, David Paul?, Kathleen Shorter?, Xenia Schmalz®, Matthew Cooper?, Aron Murphy®

3University of New England, School of Science and Technology, Armidale, NSW, Australia

bDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital,
LMU, Munich, Germany

CFaculty of Medicine, Nursing and Midwifery and Health Sciences, University of Notre Dame, Australia

Abstract We introduce an innovative method for the investigation of human gait, which is based on the
visualisation of the vertical component of the movement of the centre of mass during walking or running, in
the space of the coordinates position, velocity, and acceleration of the centre of mass. We collected data and
numerically approximated the gait by the best-fitting curve for a non-linear model. The resulting equation for
the best fitting plane or curve in this space is a differential equation of second order. The model that we
suggest is a Duffing equation with coefficients that depend on the height of a walker or runner and on the
angular frequency of the oscillation. We present statistical analyses of the distribution of the Duffing stiffness
depending on the speed.

Keywords: dynamical systems, Duffing equations, non-linear differential equations, biomechanics, biodynamics, gait modelling

1. INTRODUCTION

Research on the mechanics of human gait is of interest to different disciplines, for example sport science,
medicine, and robotics. In this paper, we introduce a model for the movement of the vertical coordinate of a
person’s centre of mass (COM) during walking and running.

Human locomotion is an inherently complicated process requiring the complex integration of neural control
and musculoskeletal dynamics in response to both internal and external forces. In an attempt to strip away
complexity and gain an understanding of the fundamental principles underpinning human locomotion, simple
mechanical models have been developed [1, 2]. The mechanical simplification of locomotion allows the
identification of just a few key parameters that can be manipulated to examine cause and effect relationships
and identify which features most influence the system.

Blickhan suggested a linear spring-mass model for hopping in 1989, [3]. Other papers followed, for example
[4-7]. The motion of the centre of mass is described by the equation mz,, + Kz = —mg, where m is the body
mass, z is the vertical deflection of the centre of mass with the origin on the treadmill surface and the direction
chosen upwards. The constant K is the stiffness, and g is gravitational acceleration. By z;; we denote the
second derivative of z, i.e., the vertical acceleration of the centre of mass. There have been different
approaches on how to calculate leg stiffness. Blickhan’s approach uses the formula K = mw3, where w is the
stride’s angular frequency of the oscillation, which, during gait, reflects the stride’s angular frequency. [3, 6].
Another approach for calculation of the leg stiffness is to find the ratio of F,,, the maximum value of the
vertical ground reaction force, and AL, the absolute value of the leg compression, i.e., K = Z—TZ. This definition
of leg stiffness is used in several publications [4, 5, 7-9; see 6 for an overview]. There is a third approach to
leg stiffness calculation based on the measurements of loss of mechanical energy by walking/running, W. Leg
stiffness K is derived from the formula W = %K (Ar)z, where Ar is the shortening of a spring (e.g. [10]). In
examining mechanical and metabolic determinants of the human walking gait, Kuo [11, 12] employed an
anthropomorphic three-dimensional, passive-dynamic model, in which human legs were represented as rigid
inverted pendulums with small point masses modelling each foot and a larger mass modelling the

concentration of the COM at the pelvis. These studies drew on earlier models of a rigid swing leg during
walking [13] and continued the view that walking and running were two distinct gaits that could not be
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described using similar mechanical models. This view, however, was discounted by Geyer, Seyfarth, Blickhan
(2006) [14] who demonstrated that a compliant-legged, spring-mass bipedal model consisting of two linear,
equal and massless springs and a single COM point as an extension of Blickhan’s one-dimensional model,
reliably predicted ground reaction forces and COM behaviour in both human walking and running. Several
subsequent studies further validated the efficacy of a bipedal spring-mass model of walking [2, 15-18]. While
much of the twenty-first century research in the field has adopted the bipedal spring-mass model and focused
on adapting or adding selected elements to improve prediction accuracy for both walking and running gait
mechanics, Blickhan’s spring-mass model remains largely valid and has been applied, with modifications to
suit certain parameters, in recent studies [19, 20].

Our mathematical model is based on the analysis of three-dimensional movement of COM. We concentrate on
the projection of the movement of COM on the vertical axis. We suggest a new approach for finding leg
stiffness for the simple harmonic oscillation model, and then develop a more precise model assuming that the
stiffness for a fixed speed is not a constant but depends on the displacement of the COM. The innovative idea
of our method is to visualise the data for the vertical component of a motion of the COM, z(t), as a curve in
the three-dimensional space, (2, z;, z;;) (see Section 2). Here z, and z,, are the first and the second derivatives
of the function z(t), velocity and acceleration, correspondingly. The linear differential equation z,, +

% (z — z,) = 0, which is a simple harmonic oscillation model of a gait, can be interpreted as an equation of the

plane in the space (z, z;, z;; ). Here K is the leg stiffness, m is the mass of a participant, and z, is the average z-
coordinate of the COM by the movement. Finding the best fitting plane to the data curve gives us the slope of

the plane % and the value of z,. This simple model suggests that the leg stiffness is a constant. But we can

observe that the slope in general is not a constant (see for example Fig.2), but can be represented as a non-
linear model with a cubic term. Thus, we use a non-linear differential equation model, approximating the
curves by the Duffing equation. The best fitting curves have the form z,, + kz(z — z,)(h — z) = 0. Here h is
the height of a participant in motion. We called the value km Duffing stiffness. The constant k is different for
each participant and increases with the speed of walking/running. We first analyse how Duffing stiffness
relates to speed using data for six participants collected by us, then verify the results using data publicly
available for 42 walking participants and 29 running participants [21, 22].

Modelling of gait by Duffing equations emphasises the commonalities of stable walking and running.
However, the curves also contain individual features for each person and velocity. We provide examples of the
variety of these curves in Section 8. Studying outliers might be more interesting for sport science, because they
are a sign of some anomalies and instability in gait, which might, for example, suggest an injury.

2. DATA RECORDING

We collected walking and running data from six participants (aged 18 to 55 years, 3 men and 3 women). The
study followed ethical protocols as per ethics requirements (HE19- 239). We measured the vertical coordinates
z(t) of the COM for each participant walking or running on the treadmill. The markers were the Left and
Right PSIS and ASIS; we then computed the average of all four. The data was collected for different integer
velocities, at 100 frames per second, over 10 seconds, for each velocity, using an 8 camera, Qualisys Motion
capture system with the COM reconstructed using a pelvic marker set within Visual3D.

Using MATLAB, we visualised the data as curves in the three-dimensional space (z, z;, z;;). We filtered out
high frequency oscillations, such as noise and individual features, using the fast Fourier transform function in
MATLAB. The direction of the motion along the curve can be found, for example, in the following way. Find
the point with the greatest z-coordinate. This is the highest point of the centre of mass during the gait cycle.
The velocity at this point is equal to zero. Hereafter, the movement goes down, i.e., the velocity z; becomes
negative. In both pictures of Figure 1, from those perspectives, the movement is clockwise.
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Fig 1. A MATLAB 3D figure shown from different perspectives. The green curve is a smoothed data curve with high-pass FFT threshold
0.03, the red curve is a smoothed data with FFT threshold 0.3.

3. DATA INTERPRETATION

The pictures in the space with the coordinates position, velocity, and acceleration, are rich in information. For
example, Figures 2 and 3 show the data for walking (4 km/hr) and running (9 km/hr), respectively, of the same
participant.

2tt (/sec?)
2tt (m/sec?)

3 -15
0.825 083 0.835 084 0845 0. 852 i 0.855 0.86 0.865 O[Ia 2t (misec) 0.78 0.8 0.82 0.84 z (m$ 86 0.88 0.9
Fig 2 Fig3
Figs 2 and 3 show data for walking, 4 km/hr and for running, 9 km/hr, correspondingly. The horizontal axis shows position and the
vertical axis the acceleration of the COM. In both Figs, the part CD corresponds to the phase of the gait when a foot touches the surface,
DE corresponds to the propulsion during toe-off, during EA the COM moves upwards and the acceleration diminishes. The arc AB
appears only in Fig 3 and corresponds to the flight phase

Here we look into the projection to the plane z, z;;, i.e., the horizontal axis shows the position of the COM (in
meters) and the vertical axis shows the acceleration (in m/sec?). The part CD of both curves corresponds to the
phase of the gait when a foot touches the surface of the treadmill. In the case of walking, it is a flat line;
vertical acceleration is close to zero. In the case of running, acceleration is diminishing because of braking
during initial foot contact. The phase DE corresponds to the propulsion during toe-off, where acceleration (and
consequently force) increases. On the segment EA acceleration diminishes, turns to zero when the COM
reaches its average position, and is minimal at the point A. The minimum acceleration for the walking curve is
—2 m/sec?, the minimum acceleration for the running curve is about —10 m/sec?, i.e., close to the gravitation
constant g. The acceleration is less during walking than during running because the body is always in contact
with the ground whereas during running there is a flight phase.
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The arc AB on Figure 3 corresponds to the flight phase of running. This part of the curve is more complicated
than just a flat constant z,, = —g, because it is smoothly connected with the rest of the curve. Some
information that we get from these curves is common for all participants and walking/running speeds, but
some features are individual — for example not each participant has the “flight” component AB at running
speeds, due to individualised transitions between walking and running gait patterns. In this paper we
concentrate on their common properties, and suggest three models, based on differential equations. We build
our three models based on data, purely numerically and mathematically.

4. MODELLING GAIT AS HARMONIC OSCILLATOR

By Hook’s Law [23], a movement of a spring with stiffness K satisfies the equation
(1) mzy +K(z—2,) =0,

where m is the mass, K is stiffness and z — z, is the displacement of the COM. In three-dimensional space

(z, 2z, z+), Eq (1) is the equation of a plane that passes through the point (z,, 0, 0). We find the coefficients in
Eq. (1) numerically, by finding the best fitting plane for the smoothed data curve. The initial values specify the
ellipse on this plane. The gravitation constant is included in Eq. (1) implicitly. We can rewrite the equation as

2) mzy; + K(z—z,) = —mg.

The coordinate z; is the average of the vertical coordinate of the centre of mass of a standing body but in a

walking/running posture. It is not exactly the same as the coordinate of COM in a standing position. The
relation between z, and z; is calculated from Eqgs. (1) and (2) and is z, = zg — %.

5. MODELLING BY A NON-LINEAR HOMOGENEOUS DIFFERENTIAL EQUATION

5.1. Best fitting curve, interpreted as a non-linear second order differential equation. Non-linear gait
dynamics has been discussed, for example, in [24]. Stride-to-stride fluctuations, which are often considered to
be noise, actually convey important information. To describe these fluctuations, we refine the method used for
the harmonic oscillation model in section 4. We approximate the movement of the COM during walking or
running by a Duffing equation, i.e., a homogeneous non-linear second order differential equation. We write

(3) mz, + K(6)(z —2,) =0,

where, unlike the harmonic oscillation model from Section 4, we consider stiffness to not be constant, but as
dependent on time, K (t), as stiffness and viscosity depend on a phase of a stride. For example, the slope on

Figures 2 and 3 depends on z(t), and the slope in the plane z, z;, reflects stiffness: it is %t) at a time t. We

divide both sides by m and consider the approximation of the function k(t) = %t) by polynomial,

(4) zee + (ky(z — 20) + kp(z — 29)* + k3(z — 25)*) = 0.
As the value z; is not known beforehand, we look for the best fitting curves of the form:
(5) zy +kiz+kyz2 + k3234 C=0.

The best fitting curve in the chosen coordinates is a differential equation of second order. Initial conditions are
the values z(0) and z,(0). We visualize the solution of this differential equation as a curve in the same
coordinate system as the data curve. See, for example, Figure 4, where the red curve is the data curve, and the
blue curve is the solution of the differential equation given by the best fitting curve. We computed a scaled
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mean squared error between the Duffing equation output and the observed data. As the values z, z; and z,
have different units, we scaled each value by dividing by the difference between the minimum and maximum
values on the corresponding axis.

5.2. Finding and analysing the fixed points. We are also interested in the fixed (equilibrium) points [25]. We
first rewrite the second order differential Eq. (5) as a system of first order differential equations:

6) z, =2z, (21)¢ = —kyz — kpz? — k373 — C.
We found the fixed points by solving the equilibrium equations (see for example [26])
(7)z, =0, —kyz—kyz? — k323 —C = 0.

The solutions to Eq. (5) are plotted in the same coordinate system as the data curves, see for example Figure 4.
The solution curves are stable if we set one fixed point equal to zero, i.e., C = 0. Then the two other fixed
points occur at z, (the centre of the closed curve, average coordinate of the centre of mass during
walking/running), and at h for stable walking/running. The differential equation Eq. (5) becomes

)z + kz(z — zy)(h—2) = 0.

Numerical computations show that, for stable gait, the fixed point z = z; is a centre, while the fixed points
z = 0 and z = h are saddles.

5.3. Interpretation of the parameters in the model. Eq. (8) shows that we can model the movement of COM
with a Duffing equation, up to a constant k, knowing only h and z,. The values h and z, are close to the height
of a person and to the average coordinate of the COM in motion, correspondingly. The gravitation constant g

is involved implicitly in the differential equation, in a similar way as in the harmonic oscillation model in

Section 4. The coefficient k does not have the meaning of the square of the angular frequency, w? = %,

as in a linear case (Section 4), but k behaves in a similar way: it increases with an increase of the
walking/running speed. We call this constant, multiplied by the mass, the Duffing stiffness. The meaning of
the coefficient k is found from the following consideration. We rewrite Eq. (8) as z, + k[—(z — z,)3 +
(h—22y)(z — z9)? + zy(h — zy)(z — 2,)] = 0. For z close to z, the linear approximation at z, is

9) zi + kzg(h — zy)(z — z,) = 0.

Comparing this equation with Hook’s Law (Eq. (1)) we get an expression that relates the angular frequency w
with the coefficient k and the values z, and h: w? =~ kz,(h — z,). Hence, the Duffing stiffness

mw? _ K
z9(h—z9)  zo(h—20)’

(10) mk =

We used that leg stiffness K is expressed as K = mw?. Assuming the model when the centre z, is
approximately in the middle between two saddle points, 0 and h, we get h = 2z, and Eq. (15) becomes
symmetrical,

(11) zp + kzi(z — zy) — k(z — z5)® = 0, where k > 0,

2
and k = (:—2 Eq. (11) is the Duffing equation for a softening oscillator [26], i.e., the stiffness diminishes with
0

the displacement.

5.5. Example based on the collected data. Figure 4 shows the observed smoothed data curve (red) and the
curve corresponding to the solution of Eq. (8) (blue) for one of the participants, together with the fixed points.
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The differential equation that describes the movement of the centre of mass of this participant running at the
speed 8 km/hr is z;; + 279(z — 0.9)(1.8 — z) = 0. We have rounded k to an integer, and z, and h to the first

decimal place. From k = 279, z = %h = 0.9 we can compute w = \/ZEZ ~ 18.56, i.e., the number of strides in
0

a second is % =~ 2.95. This participant made 24 strides in 10 secs, i.e., the real number of strides in a second is
2.4.
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Fig 4. Curve (blue) for the solution to Eq. (8) for a participant (178cm tall, running at 8 km/h) compared with the data curve (red). The
mean squared error is 0.015. The fixed points are saddles at z = 0 and z ~ 1.8 and the centre at z, = 0.9

6. STATISTICAL ANALYSIS

6.1. (University of New England (UNE) data. Fig.5 (left) shows that the Duffing stiffness depends on the
speed of walking/running for each participant. By visually inspecting the graph, we see some outlier points. To
further examine these, we calculated the standard deviation of Duffing stiffness for each participant, for the
walking data. Two participants had standard deviations (SDs) > 400, while the rest of the participants had SDs
< 100. Our observation of these two participants during the data recording showed that they were
uncomfortable with some of the speeds, and they reported having no experience with treadmills. Therefore, we
excluded these two participants from all further analyses. Fig.5 (right) shows the data for the remaining four
participants.

The behaviour of the Duffing stiffness is different for walking (3 - 8 km/hr) and running (9 - 14 km/hr).
Therefore, we separately fit data for walking and running speeds. We fitted a Linear Mixed Effect model in R
for the walking data. We included speed as the fixed effect and Duffing stiffness as the dependent variable. We
allowed both the slopes and the intercept to vary across participants. The model showed a slope estimate of
f=41.4,t =9.1, p = 0.004. For the running data, we performed an equivalent analysis. Here, the slope
associated with speed trended in a positive direction, § = 13.9,t = 3.0, p = 0.05.

98



Walking and running data for six participants Walking and running data for four participants

1500~ Mode 1500~

1
1”‘ ® Running Mode
|
‘\\ A Walking ® Running
|
|
§ 1000 | \H? g 1000 A Walking
£ “ l“[ f Participant £
'g) | / ~e- UNEO2 g Participant
| /
€ s00 =) I, - UNEOS o —*- UNE02
S I ) = =
a 7 5}5}4#" -»- UNEOE QO f ;L}ﬁ‘ﬁ ~o UNEO6
- -+ UNEO8 Vr‘fi/ -o~ UNEO8
~- UNE11 P ~ UNE1
0" - UNE14 07
0 5 10 15 0 5 10 15
Speed (km/h Speed (km/h
p

Fig 5. Duffing stiffness depending on speed with and without outliers. We consider the models for walking and for running separately.

Each line represents a different participant

6.2. Comparing UNE dataset against public datasets. Next, we compare our data against public datasets for
42 walking participants [21], and 29 running participants [22]. As these sources were set up slightly differently
than the UNE data, in order to match the data, we estimated the COM during walking or running, using the
midpoint of the ASIS markers and subtracting the lowest value for the heel’s marker.

Figure 6 shows the relationship between speed and Duffing stiffness.

Walking and running data all participants Walking and running data trimmed data
600~

5000~

Duffing stiffness
Duffing stiffness

-5000-

Speed (km/h) Speed (km/h)

Fig 6. Duffing stiffness as a function of speed, with and without outliers. Note that the Duffing stiffness, k, depends also on the height of
U)Z

the COM of a participant, z,, and the angular frequency of walking/running, w: k = =

0

First, we removed one participant with only one data point. Then, to identify outliers, we calculated the SDs in
Duffing stiffness for each participant and excluded outliers for the walking and the running datasets,
separately. For the walking data, [22], the SDs ranged from 39.2 to 3183.5. We chose to remove all
participants with SD > 100. This left us with 12 participants for the walking data. We proceeded to fit the data
with a Linear Mixed Effect model, akin to the UNE data. Again, we get a significant effect of speed on
Duffing stiffness, 3236.7, t =11.8, p < 0.0001. For the running data, [21], we removed three out of 29
participants with SD > 100. The Linear Mixed Effect model showed a significant effect of speed, f = 13.5,

t =14.0,p < 0.0001.

Finally, we compared the two datasets against each other. We created two models, one for running and one for
walking, including both of the trimmed datasets. In the Linear Mixed Effect model, Duffing stiffness acted as
the dependent variable, and the fixed effects were speed, dataset UNE versus [21, 22], with UNE acting as a
baseline. We allowed the slope and the intercept to vary across participants. For walking, the effect of speed
was, again, significant, § = 36.7,t = 12.4, p < 0.0001. However, the effect of dataset was not significant,

f = —43.1,t = —1.5,p = 0.2, nor was the interaction between dataset and speed, f = 5.3, t = 0.9, p = 0.4.
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Similarly, in the running dataset, the effect of speed was § = 13.5, t = 13.2, p < 0.0001. Neither the effect
of dataset, nor the interaction of dataset and speed were significant, § = 27.5, t = 0.9, p = 0.4 and = 3.4,
t = 1.1, p = 0.3, respectively.

In summary, we found, overall, a significant positive relationship between speed and Duffing stiffness. For the
running UNE data, the slope was not significant; however, when we combined the two datasets, the running
slope was significant, and we found no interaction. Thus, the lack of significance in the UNE running data may
be a result of low statistical power. We found no main effect of dataset, nor an interaction between dataset and
speed. Thus, we find no evidence of a difference across datasets.

6.3. Identifying and examining outliers. From a practical perspective, an interesting aspect is participants
whose data deviates from the fitted model. Here, we defined outliers based on SDs. This is the simplest
method, which can easily be applied by a sport scientist without mathematical training. We drew a somewhat
arbitrary threshold, where we treated all participants with a SD > 100 as outliers. The reasons for high SD
could vary across participants. For example, a typical problem for uncomfortable speeds less than 3 km/hr is
an additional loop, as on the red line in Fig.7. The Duffing equation does not take into account the loop, as the
blue approximation curve demonstrates. The other example of an outlier is illustrated in Fig. 8, where the
curve breaks down into two parts, corresponding to the left or to the right leg. Red lines represent the data,
blue lines are the solutions of the differential equation. A third reason for outliers that we noticed is an
instability of walk, when each step varies in the amplitude and in the average height.
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Fig 7. Slow walking speeds (< 3 km/hr, FTT=0.03) often contain an additional loop because of the compelled braking during each step

Fig 8. Asymmetry of the gait (4.7 km/hr) due to different strengths of the left and the right legs. The red curve brakes down into two parts,
corresponding to the left or to the right leg

7. DUFFING EQUATION WITH VISCOSITY AND EXCITATION FORCE

7.1. Motivation. Approximation by a homogeneous equation with zero viscosity does not take into account the
asymmetry caused by damping and excitation forces. For example, the red curve in Figure 9 shows a smoothed
data curve for a running participant (14 km/hr, FFT threshold=0.3) in the phase plane (z, z;). This curve is
close to an ellipse, and the absolute value of the slope of the main axis of the ellipse, AC, is equal to v = % if

we assume that the viscosity is a constant. (If the viscosity v = 0, the slope vanishes, and the corresponding
axis is horizontal.) The symmetry with respect to z, = 0 is disturbed by the slope. Now we compare this
slightly asymmetrical typical data curve with the symmetrical energy level curves, see Figure 9. Solutions of
Eq. (8) with different initial values of z(z, = 0) give a set of energy level curves. The red curve is the data
curve, the movement occurs in the direction ABCD. Energy is gained twice in each cycle (gait) in a phase of a
“step”, BC, and in a phase of a “fall” (in general not free fall), DA. The maximum of the energy occurs at
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points A and C, the minimum occurs when at points B and D. There is a natural desire to find an
approximation that considers the viscosity and the restoring force.

2, (m/sec)
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Fig 9. The energy level curves (blue) and the data curve (red) in the phase plane (z,zt). The absolute value of the slope AC multiplied by
mass m is the viscosity v

7.2. A best fitting curve for a non homogeneous differential equation We identified the best fitting curve in
the form

(12) 2y + vz, + k25 (2 — 29) — k(z — 24)® = fcos(2t — @),

where the term vz, is the linear approximation of the damping force divided by mass. The constant f = % ,

where F is the amplitude of the excitation force, {2 is the angular frequency of the excitation force. The
gravitation constant g is involved in the equation in a similar way as for the two already discussed models. As
in the previous models, the equation for the best fitting curve was interpreted as a second order differential
equation. The solution of the equation was computed and plotted in the same system of coordinates as the data
curve. However, the balance between the viscosity and excitation force was too delicate, and most solution
curves became stable spirals.

8. CONCLUSION

We introduced a new method for the investigation of human gait. This method is based on the visualisation of
the vertical component of the movement of the COM during walking or running, in the space of the
coordinates position, velocity, and acceleration of the centre of mass. We suggested a model by a non-linear
homogeneous differential equation. We also had a partial success in approximation of the movement by a
second order non-linear non-homogeneous differential equation. In this paper, we concentrated on features
that are common for walking and for running. The individual features of the curves are of special interest for
sport science, because they point to uncomfortableness in walking or running. We plan to investigate possible
reasons for injuries by determining how stress is generated. One possible idea is to investigate why female
runners have more frequent ACL (anterior cruciate ligament) tears than men [27].

ACKNOWLEGMENTS

The study followed ethical protocols as per ethics requirements (HE19- 239). Thanks to computer science
students Ben Fisk, Danielle Galvin and Jarra McIntyre for developing a prototype of the software used for this
paper and to sport science student Megan Bancks for the literature research. Thanks to Adam Harris and Gerd
Schmalz for their critical comments and support.

101



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

Bullimore SR, Burn JF. Consequences of forward translation of the point of force application for the mechanics
of running. Journal of Theoretical Biology. 2006;238:211-219.

Lipfert SW, Gunther M, Renjewski D, Grimmer S, Seyfarth A. A model-experiment comparison of system
dynamics for human walking and running. Journal of Theoretical Biology. 2012;292:11-17.

Blickhan R. The spring-mass model for running and hopping. Journal of Biomechanics. 1989;22(11):1217-1227.
doi:https://doi.org/10.1016/0021-9290(89)90224-8.

Blum Y, Lipfert SW, Seyfarth A. Effective leg stiffness in running. Journal of Biomechanics. 2009;42(14):2400—
2405. doi:https://doi.org/10.1016/j.jbiomech.2009.06.040.

Ferris DP, Louie M, Farley CT. Running in the real world: adjusting leg stiffness for different surfaces.
Proceedings of the Royal Society B: Biological Sciences. 1998;265(1400):989-994.

Nikooyan AA, Zadpoor AA. Mass—spring—damper modelling of the human body to study running and hopping —
an overview. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in
Medicine. 2011;225(12):1121-1135. doi:10.1177/0954411911424210.

Silder A, Besier T, Delp SL. Running with a load increases leg stiffness. Journal of Biomechanics.
2015;48(6):1003-1008. doi:10.1016/j.jbiomech.2015.01.051.

Bullimore SR, Burn JF. Ability of the planar spring—mass model to predict mechanical parameters in running
humans. Journal of Theoretical Biology. 2007;248(4):686—695. doi:https://doi.org/10.1016/j.jtbi.2007.06.004.
Farley CT, Gonzalez O. Leg stiffness and stride frequency in human running. Journal of Biomechanics.
1996;29(2):181-186. doi:https://doi.org/10.1016/0021-9290(95)00029-1.

Dalleau G, Belli A, Bourdin M, Lacour JR. The spring-mass model and the energy cost of treadmill running.
European Journal of Applied Physiology and Occupational Physiology. 1998;77(3):257-263.
doi:10.1007/s004210050330.

. Kuo AD. Stabilization of Lateral Motion in Passive Dynamic Walking. The International Journal of Robotics
Research. 1999;18((9)):917-930.

Donelan JM, Kram R, Kuo AD. Simultaneous positive and negative external and mechanical work in human
walking. Journal of Biomechanics. 2002;35:117-124.

Mochon S, McMahon TA. Ballistic Walking. Journal of Biomechanics. 1980;13(1):49-57.

Geyer H, Seyfarth A, Blickhan R. Compliant leg behaviour explains basic dynamics of walking and running.
Proc Biol Sci. 2006;273(1603):2861-2867. doi:10.1098/rspb.2006.3637. Proc Biol Sci. 2006;273(1603):2861—
2867.

Hong H, Kim S, Kim C, Lee S, Park S. Spring-like gait mechanics observed during walking in both young and
older adults. Journal of Biomechanics. 2013;46:77-82.

Jung CK, Park S. Compliant bipedal model with the centre of pressure excursion associated with the oscillatory
behaviour of the centre of mass reproduces the human gait dynamics. Journal of Biomechanics. 2014;47(223-
229).

Kim S, Park S. Leg stiffness increased with speed to modulate gait frequency and propulsion energy. Journal of
Biomechanics. 2011;44:1253-1258.

Song H, Park H, Park S. A springy pendulum could describe the swing leg kinetics of human walking. Journal of
Biomechanics. 2016;49:1504-1509.

Ludwig C, Grimmer S, Seyfarth A, Maus HM. Multiple-step model-experiment matching allows precise
definition of dynamical leg parameters in human running. Journal of Biomechanics. 2012;45:2472-2475.

Maus HM, Revzen S, Guckenheimer J, Ludwig C, Reger J, Seyfarth A. Constructing predictive models of human
running. J R Soc Interface. 2015;12.

Fukuchi CA, Fukuchi RK, Duarte M. A public dataset of running biomechanics and the effects of running speed
on lower extremity kinematics and kinetics. Peer]. 2017;5(e3298).

Fukuchi CA, Fukuchi RK, Duarte M. A public dataset of overground and treadmill walking kinematics and
kinetics in healthy individuals. Peer]. 2018;6(e4640).

Hook R. Micrographia: or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses,
With Observations and Inquiries Thereupon. London: Printed by J. Martyn and J. Allestry; 1665.

Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human
walking. Human Movement Science. 2007;26:555-589.

Jordan D, Smith P. Nonlinear Ordinary Differential Equations. fourth edition ed. Oxford University Press; 2007.
Brennan MJ, Kovacic I. The Duffing Equation: Nonlinear Oscillators and their Behaviour. John Wiley and Sons;
2011.

Stefani R. Kinesiology Analysis of Athletics at the Ancient Olympics and of Performance Differences Between
Male and Female Olympic Champions at the Modern Games in Running, Swimming and Rowing. Athens
Journal of Sports. 2017;4(2):123-138.

102



AN IMPROVEMENT TO THE TENNIS CHALLENGE SYSTEM

Tristan Barnett ¢, Vladimir Ejov 2, Graham Pollard ®
aFlinders University
b University of Canberra
¢ Corresponding author: strategicgames@hotmail.com

Abstract

Mathematics is applied to the tennis challenge system to derive a fairer challenging method. This method could
be used in actual tournament play creating greater spectator interest. The concept of ‘importance’ is used such
that a player has a free challenge if the importance of a point is above a certain threshold.

Keywords: Importance of points, Markov Chain model, player fairness

1. INTRODUCTION
The new challenge system for close line calls in tennis has been used on the ATP and WTA tour for Grand Slam
events since the 2006 US Open, and was designed to increase fairness for players by obtaining accurate line
calls and enhance spectator interest through video technology. In the current system, players have unlimited
opportunity to challenge, but once three incorrect challenges are made in a set, they cannot challenge again until
the next set. If the set goes to a tiebreak game, players are given additional opportunities to challenge (usually
one extra). If the match is tied at six games all in an advantage set, the counter is reset with both players again
having a limit of up to three incorrect challenges in the next 12 games, and this resetting process is repeated after
every 12 games.

Strategies as to when players should challenge have recently appeared in the literature. Pollard et al.
(2010) show that challenge decisions are based on the rate at which challenges occur, the expected number of
points remaining in the set, the number of challenges remaining in the set, the probability of the challenge
decision being successful and the importance of the point to winning the set. Clarke and Norman (2010) apply
dynamic programming to the challenge system to investigate the optimal challenge strategy and obtain some
general rules.

There appears to be problems with the current challenge system:

o Firstly, both of the above articles show that early in the set a player needs to decide whether to challenge
or save challenges to later on in the set when the points are typically more important. Having to make
such decisions is completely irrelevant to the game of tennis itself. The aim of the contest is to find the
better player, and not to favour the player who is luckier within, or better at playing the challenge
system. This is reflected by an article Replay System Becomes Part of Players’ Strategies in The New
York Times by Greg Bishop during the 2009 US Open.
http://www.nytimes.com/2009/09/11/sports/tennis/11challenges.html

e Secondly, a player can run out of challenges because that particular set has a lot of balls that go close
to the lines. This is perhaps particularly true in men’s singles and men’s doubles. The problem is
exacerbated when each player does not have a similar number of challenges. A player who plays more
balls near the lines is disadvantaged relatively. The player who, by chance has the need for more
challenges, is disadvantaged.

e Thirdly, it would appear to be disappointing for the player and the spectators when that player runs out
of challenges, the point is very important, and a challenge would have a clear likelihood of success.
What is the chance that a grand slam final will be ‘messed up’ by an umpire making a wrong call and
the player having run out of challenges, and subsequently losing the final when he might well have won
it otherwise? This would be a very bad result for the player, the umpire and the game. Maybe this
probability is not quite as small as some people might expect.
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METHODS
a) Markov Chain model

We explain the method by first looking at a single game where we have two players, A and B, and player A has
a constant probability pa of winning a point on serve. We set up a Markov chain model of a game where the
state of the game is the current game score in points (thus 40-30 is 3-2). With probability pa the state changes
from a, btoa+ 1, b and with probability ga=1-pa it changes from a, bto a, b + 1. Thus if Pa(a,b) is the probability
that player A wins the game when the score is (a,b), we have:

Pa(a,b)=paPa(a+1,b)+qaPa(a,b+1)

The boundary values are:
Pa(@b)=1ifa=4,b<2,Pa(ab)=0ifb=4,a<2

The boundary values and formula can be entered on a simple spreadsheet. The problem of deuce can be handled
in two ways. Since deuce is logically equivalent to 30-30, a formula for this can be entered in the deuce cell.
This creates a circular cell reference, but the iterative function of Excel can be turned on, and Excel will iterate
to a solution. In preference, an explicit formula is obtained by recognizing that the chance of winning from deuce
is in the form of a geometric series

Pa(3,3) = pa2+ paZ2pada + paZ (2pada)? + paZ (2pagda)® +...........
where the first term is paand the common ratio is 2paga

The sum is given by pa?/(1-2paga) provided that -1<2paga<1. We know that 0<2paga<1, since pa>0, ga>0 and
l-szqA:pA2+qA2>0.

Therefore, the probability of winning from deuce is pa?/(1-2paga). Since pa+ga=1, this can be expressed as:
PA(3,3) = pa? /(pa®+qa?)

Excel spreadsheet code to obtain the conditional probabilities of player A winning a game on serve is as
follows:

Enter pa in cell D1

Enter ga in cell D2

Enter 0.60 in cell E1

Enter =1-E1 in cell E2

Enter 1 in cells C11, D11 and E11

Enter 0 in cells G7, G8 and G9

Enter = E172/(E1"2+E2/2) in cell F10

Enter =$E$1*C8+$E$2*D7 in cell C7

Copy and Paste cell C7 in cells D7, E7, F7, C8, D8, E8, F8, C9, D9, E9, F9, C10, D10 and E10

Notice the absolute and relative referencing used in the formula =3E$1*C8+$E$2*D7. By setting up an equation
in this recursive format, the remaining conditional probabilities can easily and quickly be obtained by copying
and pasting.

Similar recursion formulas with boundary conditions can be obtained for a tiebreak game conditional on the
point score, set conditional on the game score and a match conditional on the set score. A predictions model is
then applied to estimate the parameters of the probabilities of players winning a point on serve (Barnett et al,
2011).

b) Importance of points
Morris (1977) defines the importance of a point for winning a game (Ipg) as the probability that the server wins
the game given he wins the next point minus the probability that the server wins the game given he loses the
next point. The importance of a point to winning a game is thus:
Ia(a,b)=Pa(a+1,b)-Pa(a,b+1).

Table 1 gives the importance of points to winning the game (Ipg) when the server has a 0.62 probability of
winning a point on serve, and shows that 30-40 and Ad-Out are the most important points in the game. In a
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similar way, we can define the importance of a game to winning a set and the importance of a set to winning a
match. Table 2 gives the importance of games to winning a tiebreak set (Igs) for player A serving. Player A and
Player B were assigned point probabilities of 0.62 and 0.60 respectively to reflect overall averages in men’s
tennis. It is clear that every point is equally important for both players. Table 2 shows that the tiebreak game has
the highest importance of 1.00, as the winner of this game wins the set. Similarly, table 3 gives the importance
of sets to winning a best-of-5 set match (Ism) and shows that the deciding set at 2 sets-all has the highest
importance of 1.00, as the winner of this set win the match. Morris (1977) derived the following useful
multiplicative result to obtain the importance of a point to winning the match (Iem): For any point of any game
of any set: lem = lp * las * Ism.

The definition of importance of a point in a match is a way of stating how much difference will result
in the outcome of the match depending on whether a point is won or lost. In the context of a challenge system,
importance of a point in a match can be viewed by how much percentage error will occur if a wrong decision is
made. For example, suppose the score in a best-of-5 set match (all tiebreak sets) is 2-2 in sets, 5-5 in games and
30-30 in points and player A is currently serving. Suppose player A is winning 62% on serve and player B is
winning 60% on serve. Using a Markov Chain model (Barnett and Clarke, 2005), player A has a 51.5% chance
of winning the match from that position. If player A won the point, then his chance of winning the match would
be 60.3%: whereas if player A lost the point then his chance of winning the match would be 37.3%. Therefore,
the importance of the point in the match is given as 60.3%-37.3%=23.0%. If a wrong decision was made at that
particular point in the match, then it would cost one of the players 23 percentage points in their chance of winning
the match.

Receiver’s score

0 15 30 40 Ad
0 025 | 034 | 0.38 | 0.28
15 | 019 | 031 | 045 | 0.45
30 | 011 | 023 | 045 | 0.73
40 | 0.04 | 010 | 0.27 | 045 | 0.73
Ad 0.27
Table 1: Importance of points to winning a game when the server has a 0.62 probability of winning a point on
serve

S

Server’
scare

Player B’s score

0 1 2 3 4 5 6
029 | 0.29 | 0.22 0.18 | 0.06 | 0.02
026 | 0.32 | 0.33 021 | 0.16 | 0.03
025 | 0.29 | 0.36 0.37 020 | 0.11
0.13 | 0.27 | 0.33 0.42 0.43 | 0.14
0.08 | 0.11 | 0.30 0.38 | 0.52 0.54
0.01 | 0.06 | 0.08 034 | 046 | 052 | 0.53
6 0.47 1.00
Table 2: Importance of games to winning a tiebreak set when player A and player B have a 0.62 and 0.60
probability of winning a point on service respectively and player A is serving

Player A’ s score
g WIN|FL(O

B’s score
0 1 2
0 | 036|042 0.32

1 1032|049 ]0.57
0.18 | 0.43 | 1.00

Table 3: Importance of sets to winning a best-of-5 set match when player A and player B have a 0.62 and 0.60
probability of winning a point on service respectively

A’ s score
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3. RESULTS

a) Proposed new challenge system
Itis proposed that the present challenge rule is modified in one way. Namely, that a player is allowed to challenge
on points with sufficiently large importance, without risking that player’s challenge point total.

Suppose the threshold value on when a player can always challenge a line call was given by the
importance of the point in the match at 2 sets-all, 3 games-all, 0 points-all and player A serving. This is calculated
as 1.00*0.42*0.25=0.104 when player A and player B have a 0.62 and 0.60 probability of winning a point on
serve respectively. Then a player can always challenge at 2 sets-all and 3 games-all, only if the point score in
the match has an importance of at least 0.104. This occurs at 2 sets-all and 3 games-all for 30-40 or Ad-Out
(Iem=0.305), 15-40 (lpm=0.189), 15-30 (lpm=0.188), 30-30 or deuce (Ipm=0.187), 0-30 (lpm=0.161), 0-15
(1pm=0.143), 15-15 (1pm=0.132), 0-40 (Ipm=0.117), 40-30 or Ad-In (lIpm=0.115) and 0-0 (lem=0.104). This is
represented in table 4 for a range of game scores in the deciding set, where an X indicates that a challenge is
always allowable by both players. Note that a player can challenge at 2 sets-all and 6 games-all (tiebreak game),
only if the point score has an importance of at least 0.231. This occurs for the majority of points in the tiebreak
game, as expected.

Score line at 2 sets-all (player A serving)
Point score 0-0 1-1 2-2 3-3 4-4 5-5
30-40 or Ad-Out X X X X X X
15-40 X X X X X X
15-30 X X X X X X
30-30 or Deuce X X X X X X
0-30 X X X X X X
0-15 X X X X X
15-15 X X X X
0-40 X X X
40-30 or Ad-In X X X
0-0 X X X
30-15 X X

15-0, 30-0, 40-15 or 40-0

Table 4: Indication as to whether a player can always challenge on a particular point in a match for a range of
game scores in the deciding set given that the threshold value is given as 0.104

4. DISCUSSION

Being able to challenge ‘free of charge’ on some point scores later in the set, but not earlier, might
cause confusion for some players in some situations. To get around this problem, you introduce a "challenge"
screen visible to both players which gives a green light before the point is played if the point has a sufficient
level of 'importance'. Otherwise the screen is empty (or a red light). Spectator’s interest would also be lifted,
quite possibly or naturally. It would give commentators an additional thing to talk about being the importance
of points. Note that the free challenge light going on could be automated with the umpire’s score card.

Instead of giving three incorrect challenges per set as proposed above, suppose players are given X
challenges per set and have unlimited opportunity to challenge, but once x incorrect challenges are made in a
set, they cannot challenge again until the next set. Further, players can always challenge when the point has a
sufficient level of ‘importance’ = y without affecting their challenge point total, otherwise players cannot
challenge if they have run out of their challenge point total.

Scenario 1)
When x=3 and the level of ‘importance’=1, is equivalent to the current system.

Scenario 2)
When x=0 and the level of ‘importance’=y, is “optimally” the best system in terms of minimizing time on

player’s challenging on “unimportant” points.

Scenario 3)
When 1<x<3 and the level of ‘importance’=y, is somewhere between Scenario 1) and Scenario 2)
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At the very least Scenario 3) could be adopted such that players can always challenge when the point
has a sufficient level of ‘importance’ =y without affecting their challenge point total. However, Scenario 2)
could be obtained as an “optimal” system in terms of minimizing time on player’s challenging on “unimportant”
points.

However, whilst the fifth set is the most important set, it may be better to have the same procedure in
each set. This is likely to be more easily accepted by the relevant people. An advantage of this is that the
operation of the system would be identical for all sets. There is something nice about uniformity. Further, under
the system described above, there would be points in earlier sets that are more important than some of the ‘free
challenge’ points in the fifth set. This may present a problem. So just looking at set importances rather than
match importances could be a preference.

Maybe every point in the tiebreak game should be a free challenge (with no ‘additional’ challenges
given to the players at 6/6 because the set is ‘long’) and any point within the set at least as important as any point
in the tiebreak game should also be free. This could be a useful selling point to the interested parties. If this was
considered too generous, any point at least as important as say 2/2 within the tiebreak game could be a free
challenge. The fact that players are given an extra challenge at 6/6 gives some merit to the ideas in this paper.
The idea in this paper in fact parallels the present rules at 6/6. It just formalizes some present operational
characteristics.

If the “challenge” screen was too much of a problem for players then you could have a system where a
free challenge was given on every point in tiebreak games (representing a high level of importance) and at say
set/match points.

5. CONCLUSIONS

Throughout this article it is demonstrated that a fairer method to the line call challenge system is such that a
player should always be allowed to challenge at a score line with a certain level of importance without affecting
their challenge point total.
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Abstract

The intent of this research is to investigate whether the players’ location on the tennis court is related to their
likelihood of success in a rally. Specifically, the players’ distance from the centre net and centre line are key
features that can be engineered. This type of data is obtained using a method for extracting the physical
coordinates of the players on the court from broadcast footage. The physical coordinates of each player are
extracted using a proprietary pipeline developed by Play in the Grey (McDonald et. al., 2020). This provides
space-time coordinates for each frame in the footage which are used as input for the in-game prediction model.
This research draws from previous research done on machine vision algorithms for Tennis footage (e.g. Chu
et. al., 2010; Jiang et. al., 2009) and on various statistical methods for predicting Tennis match outcomes (e.g.
Cornman, et. al., 2017; Kovalchik et. al., 2019; Kovalchik, 2020).

Initial results reveal that the closer a player is to the middle of the court towards the net, the greater the
chance of winning the rally. The ability to process data in this way has implications for improving feedback to
players.

Keywords: Feature Engineering, Logistic Regression

1. INTRODUCTION

The integration of new technology in sports is expanding the level of information and insight that can be
extracted from video footage. Using automated computer vision systems could make in-depth insights more
accessible to the benefit of athletes, coaches, broadcasters, as well as spectators.

Aside from the traditional statistics related to a sport, there has been a growing appetite for the creation of
data-driven novel metrics that enhance the spectatorship of the sport. These metrics are not the usual statistics
derived from historical performance; they are characteristically more viewer-friendly real-time analysis
interwoven with graphic visualisations. An example of this type of new generation metric is the Premier
League’s development of ‘momentum tracker’ which calculates the likelihood of a goal within the next 10
seconds of gameplay.

The aim here is to apply a novel method of creating a real-time win-prediction model on Tennis rallies.
We will derive physical metrics directly from broadcast tennis footage and use this data to create a model to
determine which player is likely to win the current rally. The scope of this research is to accurately track the
movement of the players relative to the centre net, in a singles tennis match rally.

The play of a single point in Tennis is by a rally. In simple terms, a rally in tennis starts with one player
serving the ball from behind the baseline and ends when one player fails to return the ball within the
opposition’s court area. An average rally in a professional tennis match can last anywhere between 1 second to
10 seconds. The project will focus on a single rally event; footage used will be of an isolated rally which can
vary in duration and a win-prediction model will be calculated on the variation of win probabilities within a
rally.

The project requires two main components:

1. A reliable and accurate machine-vision algorithm to track player movement relative to the centre net

within a given video footage.

2. An accurate predictive model to determine the players’ likelihood of winning.

For the first component, we will be using a proprietary algorithm developed by the company Play in the
Grey (www.playinthegrey.com) to calculate the movement of the player within a single rally (McDonald et. al.
2020; Trowland et. al., 2020). The footage fed into the model is solely from the court view of a rally. In
televised tennis matches, this viewpoint is the standard way of showing a single rally and is captured from a
height above and behind one of the players’ showing the entire court from a down-angle view. For most
rallies, the court view footage provides a relatively unobstructed and stable recording of the entire duration of
a rally. The Play in the Grey model can take in this angled view of the court and players and project a 2-
dimensional map of the match at each frame with X and Y coordinates of the player’s location relative to the
court. The model creates this 2D map from homography estimation which has been refined to minimise loss of
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positional accuracy as outlined in Trowland et al. (2020). Whilst the court view footage tends to be relatively
stable, there are slight camera movements during the rally which have the potential to affect the accuracy of
the estimation. The model is also able to adjust for accuracy losses due to camera movements such as pan,
zoom and tilt as explained by McDonald et al. (2020).

There is a substantive amount of literature on footage-derived object detection models developed
specifically for tennis. Useful insights can be derived from literature for the purposes of this project, on the
type of footage used (camera angle), separating useful elements from background noise and movement
tracking.

FOOTAGE

Previous studies using computer vision on broadcast Tennis footage have opted for a similar approach by
solely using the “court view” perspective footage as implemented by Archana and Geetha (2015), Jiang (2009)
and Chu and Tsai (2010). To utilise raw broadcast footage, Chu and Tsai (2010) implemented a court view
detection algorithm which recognised when the correct type of footage was being played and would begin the
object detection algorithms. Detection of court view was carried out by identifying whether the dominant
colours in the frame match that of the court view frame.

ALGORITHMS FOR PLAYER DETECTION IN TENNIS

A common issue with using the court view footage is that the player on the far court is represented by a
smaller number of pixels and their movements are harder to track. The player on the far court is also more
likely to be obstructed in view by the umpire, ground staff or advertisements. In dealing with this issue, both
Archana and Geetha (2015) and Jiang (2009) opted for a partition of the two halves of the court with two
search windows each focusing on one player.

Jiang (2009) implemented a further step in player detection by creating an ‘Adaptive Search Window’.
The court boundaries are established by the Initial Search Window for the upper and lower half of the court,
then non-dominant colour detection is implemented to detect the player (dominant colour being the average
colour of the full court). With the initial identification of the player, a smaller adaptive search window is
created, which based on the possible speed of a human(2-7m/s) is only big enough to anticipate potential
movements by the player but small enough that noise is not included in the search area. Only tested on 50
segments from 12 tennis games.

Archana and Geetha (2015) implemented the background subtraction method; develop a background
model from a collection of background images then important elements of footage are derived by subtracting
against the background model. Rate of success for player tracking — upper half player tracking 85.96% and
lower half player tracking 91.23%.

PREDICTIVE ALGORITHMS

There is sufficient literature on applying building algorithms to predict tennis match outcomes, however, there
is a limitation on the utility of these studies to this project’s objective. These studies have only utilised
statistics from determined and completed matches as well as external factors such as player rankings whereas
the focus of this project is to make predictions based on real time in-game statistics and therefore more limited
in the data available to make predictions.

Cornman et. al. (2017) is a good example of the current literature on Tennis match predictions. The study
carried out match outcome predictions using several common machine learning algorithms including ANN,
Random Forest, and others on historical match data. The features that were used for this study included but not
limited to rankings, age, height, aces, double faults, and surface type. Whilst they yielded somewhat successful
prediction rates, the algorithm is limited to historic data and is unable to account for real-time statistics from a
match.

Literature on incorporating real-time statistics to create dynamic win-probabilities on sports such as
football, NFL (US) are more established than tennis. Robberechts et al. (2019) outline that to calculate in-
game win-probabilities, sport-specific features that are influential to scoring must be selected to make an
effective dynamic predictor. Domain knowledge may be necessary to select the correct features to include. The
study utilised a Bayesian model using eight features for each football team and predicted the future number of
goals a team will score as a temporal stochastic process.

Kovalchik and Reid (2019) presents a novel approach to creating a dynamic model for tennis win
predictions. The study has utilised a dynamic empirical Bayes updating rule to create a real-time prediction
model which uses both in-game features as well as pre-match features. The study identifies serving as a key
element in forecasting the probabilities of a players’ success in a Tennis match. The model initialises a win-
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expectation using the player’s historical serving performance, then this win-expectation is adjusted throughout
the match using the actual in-game serving performance of the player. The study found that the dynamic
modelling provided a 28% reduction in error of in-match serve predictions as well as a 4% increase in overall
win prediction.

Kovalchik (2020) also studied the optimization of the Elo rating system to predict the results of tennis
matches. She carried out the research by combining MOV (Margin of Victory) and four different models:
linear, joint additive, multiplicative and logistic. In that model, data is used to update the model based on
historical data as well as data from matches, thus improving the accuracy of the new model's predictions. Still,
the model is only 67% accurate, and that's mostly based on the underlying historical data.

2. METHODS

Here, the intent is to investigate whether the players’ location on the court is related to their likelihood of
success in any given rally. Two key dimensions are of interest: the players’ distances from the centre net and
centre line. We utilise computer vision for extracting the physical coordinates of the players on the court from
broadcast footage (McDonald et. al., 2020).

DATA COLLECTION

To test the concept of whether player movement impacts their probability of winning a rally, we sourced data
from the Wimbledon Tennis Tournament. Commonly known as The Championship, this is the oldest tennis
tournament in the world and arguably the most prestigious.

Rally outcome and video footage are readily available online from https://www.wimbledon.com/. The
data has two forms: already machine readable (information about the match and outcomes) and the footage.
The footage requires substantial processing to first extract the tennis player’s co-ordinates on court per frame
and then feature engineering to extract metrics that may be representative of movement.

DATA PROCESSING

From the Wimbledon.com website, we collected a set of rallies and the corresponding footage. An important
step in this process is ensuring the videos are suitable for the machine vision pipeline. This is dependent on
factors such as the quality of the footage, height of the camera and stability of the camera.

Player on court location data was extracted using Play in the Grey’s pipeline. As each frame is processed,
time-based data of player movement is generated. From the initial player detection, shown in Figure 1, initial
data representing the human perspective is captured. This is then transformed into a top-down view using
homography as shown in Figures 2 and 3 and explained by McDonald et al. (2020). Once homography has
been applied to transform the data we have coordinate tracking of player in a rally, where the two-dimensional
data is represented as pixels. Pixel coordinates are translated to coordinates on the tennis court using a simple
transformation as the dimensions of a tennis court are standardised. As explained on Olympics.com, “a
competitive tennis court must be rectangular in shape, measuring 23.77 metres long. The width, however,
differs for doubles (10.97 metres) and singles (8.23 metres).”

DATA DESCIPTION
To aid in construction a dataset for analytical purposes, the linkage file to connect the machine vision output
data to the rally outcome data has the following features:
e Gender: 1=Men, 0=Women
e Winner: 1=the player is further away from the camera, O= the player is closer to the camera
e Server: 1= Far court player, 0 = Close court player
e TLx, TLy, TRX, TRy, BLx, BLy, BRx, BRy: represent the pixel coordinates (x,y) for the four corners
(Top\Bottom, Left\Right) of the Tennis court captured in one frame (can be from any part of the
video, preferably middle of video). For footage where the camera moves slightly, use a frame which
captures the most common coordinates of the Court in the video. This is used to convert the x-y data
from pixels to metres.
e xyFrameTime: The time stamp for the frame used to determine the court pixel coordinates: TLX,
TLy,..., BRy (An approximate time when the frame was taken is enough).
e RallyLength: the length of rally in seconds.
e CamMvmt: 0 = No camera movement in footage, 1 = Camera movement in footage.
e MatchName: Name of video used to extract footage
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Figure 1: Example of humans detected in sample footage from Wimbledon 2020.

Figure 1 shows humans detected in a single frame. Other features are also detected, such as text and logos. As
mentioned previously, to convert these detections into useful data, a homography transformation is applied.
This can be simply understood as it is used to describe the object's positional mapping relationship between the
world coordinate system and the pixel coordinate system.

DATA CLEANSING
Figures 2 and 3 show the output of the detection post homography. Importantly as shown in Figure 1, many
humans are detected, some of which remain apparent within the court surrounds in Figure 2 (the left image).
The following process was undertaken to improve the quality of data.

1. Remove non-player detections

2. Remove incorrect player coordinates

3. Impute missing player coordinates

4. Removal of due to camera movement issues.
In Figures 2 and 3, each dot represents a player’s location on the court at each frame (darker dots early in rally,
lighter dots late in rally). Comparing the two side-by-side images helps show the visible error values. This
includes the umpires at the far end of the court and on the left-hand side. The two yellow dots at the top of the
bottom court are post rally. To clean the data, bounding boxes are used to identify valid coordinates.

FEATURE ENGINEERING
Using the transformed data, we aggregate data of each player in a rally to obtain the maximum, minimum,
mean, standard deviation for the following:

e Distance

e Speed

e  Acceleration
The distance between the player and the net
The distance between the player and the centre line
In all instances, the data is converted to a half court view, so all data is converted. That is, the top half of the
court undergoes a 180-degree rotational transformation through the centre of the court and the middle of the
net. Table 1 lists the features constructed for player per rally along with the description. The prefix for most
attributes is one of min (minimum), avg (arithmetic mean), max (maximum), std (standard deviation) and the
refence point for comparison (net as a vertical reference) and centre as a (horizontal reference). Distance (dist)
and acceleration are derived from the change in position from frame to frame.
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Figures 2 & 3: Example of top-down view of detected humans over a series of frames, before (left) and after

isolation of the tennis players (right). Positioning is represented by pixels. Darker colour indicates closer to
start of rally and lighter colours closer to the end of the rally.

Variable

Description

min_fromNet
avg_fromNet
max_fromNet
std_fromNet
min_fromCentre
avg_fromCentre
max_fromCentre
std_fromCentre
avg_dist
max_dist
std_dist
avg_acceleration
max_acceleration
std_acceleration
frontHalf
backHalf
behindLine
rallyLength
Server

minimum distance from net

average distance from net

maximum distance from net

standard deviation of distance from net
minimum distance from centre

average distance from centre
maximum distance from centre
standard deviation of distance from centre
average distance moved in rally
maximum distance moved in rally
standard deviation of distance moved
average acceleration in rally

maximum acceleration in rally
standard deviation of acceleration
proportion of time in front half of court
proportion of time in back half of court
proportion of time ibehind baseline
time taken to complete rally

binary (server = 1, receiver = Q)

Table 1: Data features engineered from the data
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3. RESULTS

PREDICTIVE MODEL

We constructed a simple logistic regression model using only the attributes listed in Table 1. The outcome of
the rally (1=win, O=loss) was the dependent variable. 152 rallies with data and corresponding footage were
available for analysis, which was split in 121 training instances and 31 test cases.

Variable Coefficient
min_fromNet: -0.766
min_fromCentre -0.629
avg_dist -1.050

Table 2: Statistically significant variables from logistic regression to predict rally outcome based only on
player movement within a rally.

In testing, the model had an accuracy of 71%. This suggests that there is sufficient explanatory power for the
three statistically significant attributes listed in table 2 (at the 5% level of significant). Importantly, these
attributes are also practically significant.  Starting with avg_dist which has a negative coefficient. This
indicates that the less a player has to move, frame to frame, the greater the chance they have of winning. As
this measure is essentially speed (distance for a unit of time), this means that the longer a player must run at
pace within a rally, the more likely they are to lose. This potential interpretation is given further weight by the
first two rows: minimum distance from the net and minimum distance from the centre. As both coefficients
are negative, this means that the closer a player gets to the net, or is from the centre, the more likely they are to
win. Given the magnitude for the et attribute is larger, this implies that from the sample of 121 rallies used to
construct the model, getting to the net was more important than being in the middle.

4. DISCUSSION

Whilst there was no literature available on utilising footage-derived data to predict win probabilities, there are
still valuable insights we can draw from related literature to achieve our goal. Studies on models that solely
utilised historical statistics are useful if the project were to incorporate such statistics into the model. Based on
the findings from Kovalchik and Reid (2019), our model should consider the impact of serving and its
significant influence on the likelihood of a player winning the rally. This could potentially be implemented
through determining which player is serving, and initialising appropriate win-expectations based on the
independent probability of a serving player’s likelihood of winning the rally.

Following on the idea of utilising a combination of historic statistics and in-game statistics, we could
extend this to the player movement information derived from the machine vision model and explore domain
knowledge related to positional advantages in tennis. This would allow us to build a model that could
determine whether a player’s position on the court at any given time is statistically an advantageous position
relative to the opposing player’s position on their half of the court.

There is substantial potential to expand this exploratory analysis by including additional information and
incorporating the findings from Kovalchik and Reid (2019). Specific future work includes: expand feature
selection, use more data from more tournaments and use entire set footage instead of rallies.

To then expand upon a dynamic probability model, we need to expand feature selection: gender, age of
player, types of surfaces for tennis courts. That is, we need to more thoroughly consider features that may
affect the player’s performance.

5. CONCLUSIONS

The progress made in machine vision algorithms now allows us to extract vast amounts of data from standard
game footage which until recently was impracticable at an affordable cost. In creating new predictive models
using this data, not only would we be able to enhance the experience for spectators, but there is also potential
to generate an entirely new set of sports statistics using a mixture of domain knowledge and feature
engineering. Athletes and coaches at various levels of the sport could access in-depth breakdowns and analysis
that could improve performance and tactics.

In building the novel prediction algorithm, the study will explore the raw movement data extracted as well
as using feature engineering to generate new insights that may aid in predicting the winner of a tennis rally.
The data produced will be used to train and evaluate various machine learning algorithms to determine
whether the in-game analytics could provide better accuracy over models that solely utilise traditional tennis
statistics.
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Abstract

Tennis matches that take much longer than expected are a problem in several ways. They can delay the starting
time of the following match, cause issues for broadcasters, lead to an increased number of injuries, and decrease
the winner’s chance of winning in the next round. In this paper several alternative game structures for possible
use in reducing the length of best-of-5 set matches are studied. Also, criteria for comparing two or more tennis
match scoring systems are outlined.

Keywords: Alternative game scoring systems for tennis, long matches in tennis, mean duration,
variability of duration of tennis matches, efficiency of tennis scoring, changes to tennis scoring,
parameter values in tennis

1. INTRODUCTION

The uncertain and highly variable length of games, sets and matches in tennis has been a concern for players,
television, spectators, as well as tournament directors. It remains a concern.

Some matches have been observed to last more than 5 hours even though the 5% set was not a ‘long’
advantage set. For example, in the 2012 Australian Open Final, Djokovic beat Nadal, 5-7, 6-4, 6-2, 6-7, 7-5 in
5 hours and 53 minutes. Whilst long matches can be exciting as a stand-alone match (as in a final), it can be seen
as unfair in the tournament setting as the winner can be too exhausted to do justice to his performance in the
next round. This typically can occur in men’s grand slam singles matches as they play best-0f-5 set matches.
Thus, it would be useful to have a scoring system that reduces the likelihood of such long matches, whilst keeping
other match characteristics (such as the probability of the stronger player winning) much the same as they are at
present.

Over the last several decades a considerable amount of research has been carried out on the match
characteristics of various tennis scoring systems. When considering alternative scoring systems, it is not
sufficient to consider just the mean and variance of the duration of a match. Issues related to the skewness of
this distribution of duration are an important consideration. The probability that the better player wins also needs
to be considered. Such measures or characteristics are available and are important in deciding whether a scoring
system is acceptable or not. It is noted that there is typically a need for compromise when considering two or
more scoring systems, as it is unlikely that one system is best on all such measures.

The major purpose of this research is to achieve a greater understanding of the characteristics of several
match scoring systems using variations of the No-Ad game concept, which was described and studied by Pollard
and Noble (2004) and is currently used in doubles (excluding grand slams where a standard deuce game is used).
In the No-Ad game a player needs to win 4 points in order to win the game (and if the score line reaches 3 points-
all in that game, the player who wins the next point wins that game). At most 7 points are played in the No-Ad
game and this characteristic helps to reduce the skewness of the distribution of duration of a set and match of
tennis. Some other game scoring systems are also considered in this paper.

The idea of "deuce™ was introduced (at least as far back as 1490) for a simple reason ... to ensure that
the game could not be won by a one-point difference in the players' scores. Deuce was derived from the French
"a deux du jeu"... two points away from game. It is reasonable to believe that there was no mathematics carried
out on this deuce game back in 1490 concerning how it would affect the game of tennis into the future (Barnett,
2012).

Pollard and Noble (ibid) studied the efficiency and some duration characteristics of a best of 3 sets
match using the No-Ad game. They also set up the 50-40 game in which server needs to win 4 points in a game
whilst the receiver needs to win only 3 points to win the game. The concept behind such a game structure was
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that the server has the advantage of serving within the game but has the disadvantage of needing to win one
more point than the receiver in order to win. They noted, for example, the increased efficiency of best of 3 set
tennis scoring when used for ‘strong’ servers as in men’s doubles but did not study the best of 5 set matches,
which are considered in this paper.

Recently, Pollard and Barnett (2018) reported on the 50-40 game and a few variations of it within a
single set of tennis. One variation they studied was the 50-40, 40-0, 40-15 game which is a 50-40 game modified
so that the server wins the game if the score reaches 40-0 or 40-15. The logic behind a scoring system such as
this is that there is little point (in terms of efficiency and duration) in playing points that are relatively
unimportant and unexciting. Further, in their discussion section they suggested a couple of further modifications
of the 50-40 game that could be usefully studied. In their work they considered just a single set of tennis and
whilst these single set results give some useful insights into the likely characteristics of a best of 3 or best of 5
sets match when using such games, the study of a complete match gives greater clarity regarding any preferred
system. This is done in this paper.

2. METHODS
Alternative game structures to address the problem of ‘long’ best of 5 set matches

In this study we consider the best of 5 tiebreak sets using the two official game scoring systems of the Rules of
tennis (advantage/deuce games and no ad games) as well as three possible alternatives.

(1) Advantage/Deuce games — a player needs to win 4 points but if the score line reaches 3 points-all, then
a player must be 2 points ahead to win the game.

(2) No-Ad — a player needs to win 4 points in order to win the game. If the score line reaches 3 points-all,
the player who wins the next point wins the game. At most 7 points are played in the No-Ad game.

(3) No-Ad* - a player needs to win 4 points but if the score line reaches deuce, then a player must win 2
more points to win the game. At most 9 points are played in the No-Ad* game.

(4) 50-40 (as defined by Pollard and Noble (ibid)) — the server needs to win 4 points whilst the receiver
needs to win just 3 points in order to win the game. At most 6 points are played in this type of game.

(5) 50-40* - server needs to win 4 points and receiver needs to win just 3 points but if the score line reaches
3-2 (40-30) then the player who wins two more points wins the game. At most 8 points are played in
this game.

Criteria for comparing tennis scoring systems

In this study of the best of 5 tiebreak sets matches for men, where every game is one of the above-mentioned
game scoring systems, the match characteristics of interest are

(1) Probability that the stronger player wins, P

(2) Expected value of number of points played (duration) in the match, E(D)

(3) Standard deviation of the number of points played in the match, SD(D)

(4) Efficiency of the scoring system

(5) Coefficient of skewness of the number of points played in the match, y = E[ (Z — p)®]/c®.

(6) The 95%, 99% and 99.5% points in the cumulative distribution of duration, denoted by CD95, CD99

and CD99.5.

Note that the efficiency of the tennis scoring system was devised in a very elegant paper by Roger Miles

(Miles, 1984). The efficiency of a tennis scoring system with key characteristics P, the probability that the better
player wins, and m, the mean duration (mean number of points played in the match), is equal to:

(2(P-Q) In(P/Q)) / (m (pa-pe) In(Page/Pega))

where Q = 1-P, pa is the probability player A wins a point on service, pg is the probability player B wins a point
on service, gqa = 1-pa and gs =1-ps.

116



Given two scoring systems with the same mean duration, the one in which the better player A has a
higher probability of winning has the greater efficiency. Correspondingly, given two scoring systems with the
same likelihood of the better player winning, the one that has the smaller mean duration has the greater
efficiency. Note that the efficiencies of tennis scoring systems are typically a lot less than 1 mainly because of
the nested nature (points, games, sets) of tennis scoring using ‘best of” structures. Very efficient scoring systems
do not have ‘best of” structures. They also have very large variances of duration, and this makes them quite
inappropriate for scoring in tennis.

Note that the characteristics CD95, CD99, and CD99.5 should be sufficient for comparing the upper
tails of the duration distributions, as (only) 127 five-set matches are played each year in each Grand Slam Men’s
Singles event.

Parameter values

The key input parameters in modelling a men’s singles tennis match between player A and player B are pa =
probability that player A wins a point on his serve, and pg = probability that player B wins a point on his serve.

Cross and Pollard (2011) noted that for men singles at the four Grand Slam events in 2008, the
proportion of points won on service averaged 0.631, 0.621, 0.667 and 0.643 at Australian Open, French Open,
Wimbledon and US Open respectively. They reported that these values ‘had not changed much over the years
[1999 to 20097, except for the French Open (‘associated with a considerable increase in first service speed’
(Cross and Pollard (2009))). As these have an average value of 0.64, this value is used as the most appropriate
average value for this study.

In the Cross and Pollard study the proportion of points won on service by the winner minus the
proportion won on service by the loser was 0.11. This figure is biased in favour of the winner. For example,
using simulation methods in a study of bias in sporting statistics, Pollard et al (2010) noted...“As the winner
must have won the last point, last game and last set, the winner’s service statistics can have an upwards bias,
and the loser’s service statistics a downwards bias.”, and...”’In the best of three tiebreak sets match between two
equal players (with pa = pg = 0.65), the proportion of points won on service by the eventual winner is shown to
be about 0.065 on average greater than the proportion of points won on service by the loser. For a best of five
tiebreak sets match between these two equal players, this difference is shown to average about 0.049.”

It is important that such biases are considered when working with reported statistics. We have done this
in deciding the parameters to use in our study.

Taking 0.04 as a reasonable difference between the serving p-values in a ‘moderately close’ match,
appropriate values for the parameters in a typical or average men’s singles match are pa = 0.66, ps = 0.62.

It is noted here that, in an article using data from the 2016 Rio Olympics, Carl Bialik (2016) concluded
that the service success rates for men’s singles was 63%. It is noted that this percentage is quite similar to the
figure above, and to the assumptions we make in our modelling.

It was anticipated that whilst no scoring system would be ‘best’ with respect to all characteristics, one
scoring system might in some sense be best “overall’.

Method of Analysis

Most of these results are numerically exact and were developed using recursive formulas in an Excel spreadsheet
(Barnett, 2016). The theory behind the recursive formulas is now outlined.

To analyse the progress of a match we denote by Z the total number of points played to date. Z is a
discrete random variable with density f(z). The moment generating function of Z is
Mz(t) = E(e%) = X, e'” f(2).

In a singles match there are two players, denoted by A and B, and the serve is rotated between player A and
player B according to prescribed rules. Now Z = X + Y, where X is the number of points served by player A,
and Y is the number of points served by player B. We make an important assumption that X and Y are
independent random variables, i.e. the serving strength of player A does not influence the serving strength of
player B, and vice versa. It follows from this that the joint distribution of these variables can be factorised.
FOXY) = F1i(X) * F2(Y)

Using this independence of X and Y, we obtain Mz(t) = Mx(t)Mv(t) as in Parzen(1960)
The formulas for extracting the moments of the sum of independent random variables is the following:
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Miz = M1y + Mix

M2z = M2y + 2M1xM1y + Max

M3z = M3y + 3M1xM2y + 3MaxMyy + M3x

Maz = Mgy + 4M1xM3zy + 6MaxM2y + 4MaxM1y + Max

These expressions are obtained by successive differentiation the moment generating function with respect to t,
and putting t to 0.

The score for a match in progress will be denoted by (a, b : ¢, d : e, f), where (a, b) is the score in points,
(c, d) is the score in games, and (e, f) is the score in sets, for player A and player B respectively. We will use a
truncated form of this notation whenever it is convenient so to do.

A tennis match consists of four levels - (points, games, sets, match). It becomes necessary to represent;
points in a point as pp,
points in a game as pg,
points in a tiebreak game as pgr,
points in a tiebreak set as psrt
points in a best of 5 all tiebreak set match as pmsr.

Let sa, Sg represent the condition that player A and player B, respectively served first at the beginning
of a set. Let ca, Cg represent the condition that player A and player B, respectively are currently serving in the
set at the score (a, b : ¢, d). If (a, b) is not a boundary score for the current game then
Sa = Ca and sg = Cg, if (¢ + d) mod 2=0
Sa = Cg and sg = Ca, if (¢ + d) mod 2=1
except in the case of the tiebreak game of the tiebreak set, with ¢ = 6, d = 6, when
sa =caand sg = Cg, if (a+b) mod 4=0 or 3
Sa =caand sg = Cg, if (a +b) mod 4=1 or 2

Let P™T(a, b : c, d|sa) represent the probability of player A winning a tiebreak set at this score, and
player A serving first in the current set. Let Y*T(a, b : c, djsa) be the number of points remaining in the set at
this score with player A serving first in the current set. This number is a random variable. Let M ypst(ap:c,dsa)(t)
be its moment generating function.

Similarly let PPT(a, b : ¢, djwa, sa) represent the probability of player A winning a tiebreak set at this
score, and player A serving first in the current set. Let Y™T(a, b : ¢, djwa, sa) be a random variable of the number
of points remaining in the set at this score conditional on player A both winning the set, and serving first in the
current set. Let Mypst@ab.c.dwasa)(t) be its moment generating function conditional on player A both winning the
set, and serving first in the current set.

Many variants of this notation will be used. The representation of the score will be restricted whenever
it is not essential to display the full score. Other symbols include B for player B, | for the condition of losing,
and n for the condition of serving next.

The next step is to introduce weighted moment generating functions. Let X be a conditional random
variable. Let C be the condition that X occurs with probability px.

Then
Wxic(t) = pxMx(t)

This product of a probability and its associated moment generating function is defined as a weighted
moment generating function. The weight is the probability measure such that the conditions applied to the
random variable are true.

Denote by wqx the weighted n" moment of the random variable X. Then
Wnx = pxmnx forn=1,2, 3, 4, ...

The more important situation for us arises when the score does change. Let X and Y be independent
random variable with conditional probabilities px and pv, respectively, of occurring. Let Z denote the random
variable for their sum, Z = X + Y when both X and Y occur. Then pz = pxpy. It follows from the formula for
moment generating functions that the weighted moment generating functions satisfy
Wzic1,ca (1) = Wixca () Wyica(t).
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The formulas for extracting the weighted moments are the following:
Pz = pxpy

Wiz = PxWaiy + WixPy

Waz = PxWay + 2WixWiy + WaxPy

W3z = PxWay + 3WixWay + 3WoxWiy + WaxPy

Wiaz = pPxWay + 4WixWay + BWoxWay + 4WsxWiy + WaxPy

We now develop the algebra for weighted moment generating functions. We are able to add together
two weighted moment generating functions whenever we encounter two mutually exclusive cases. Two simple
examples where the score does not change are:

(a) Condition on initial server
WYpsT(a,b:c,d)(t) = WYpsT(a,b:c,dlsA)(t) + WYpsT(a,b:c,dlsB)(t)

(b) Condition on winning or losing
WYpsT(a,b:c,dlsA)(t) = WYpsT(a,b:c,dlwA,sA)(t) + WYpsT(a,b:c,dHA,sA)(t)

We now apply these ideas to the playing of a single point. In this case some of the notation appears to
degenerate, so we must be careful. However, this analysis will be used whenever the score changes as a point is
played in a game, a set, or a match.

Each point played is a single point, irrespective of the score. For player A serving, the probability of
winning the point is denoted by pa irrespective of the score and ga = 1-pa. Let PPP(()[ca, Wa) and
PPP(()|ca, 1a) represent the probabilities of player A winning and losing a point on serve respectively from score
line () within the point. It follows that:

PPP(()|ca, Wa) = pa
PPP((lcas 1) = ga

Let YPP(()|ca) represent the number of points remaining in the point from score line () with player A
serving. Each point played is a single point, so YPP(()|ca) = 1. Let YPP(()|ca,Wa) and YPP(()|ca,la) represent the
number of points remaining in the point from score line () given player A won and lost the point respectively
with player A serving.

Therefore:
Mypp(oica)(t) = E(e YPPORA) = E(ef) = et
Wy pp(orcawa)(t) = PPP(()lca,Wa)My ppoiea)(t) = pae’

This is a fundamental brick in the model.

It is easy to check that
Wn(YPP(()|ca, wa)) =paforn=0,1,2, 3,4, ..

Likewise Wypp(oieaa)(t) = PPP(()[ca, 1a)Mypp(iea)(t) = GaE(€)

and
Wh(YPP((lca, la)) =qaforn=0,1,2, 3,4, ..

a) Number of points in a game
Let Wypg(ableawa)(t) and Wypgabiea,1a)(t) represent the weighted moment generating functions of the number of
points remaining in the game from score line (a, b) given player A is serving and player A won and lost the game
respectively.

Theorem.
Whrpga,blcawa)(t) = Wypp(oieawa) () Wypg(ar 1 oicawa)(t) + Wypp(oicata) () Wpga,o+1icawa)(t)

Proof. Mypgabicawa)(t) = E(e Y PI@PIAWA) s an expectation that is calculated before the point at score (a, b) has
been played. The point played is won and lost with probability pa and ga respectively, where pa+ga=1 since
there are only two possible outcomes. When we try to recalculate the original expectation after the point has
been played, we obtain the weighted sum of two expressions

119



Mng(a,bch,wA)(t)
= paE (1Y PaErLOICAWANPPY(g + 1, blca, Wa)/PPY(a, blca, Wa)
+QaE(e1+Y PO@DHICAWAN PRI [y + 1|ca, Wa)/PPI(a, D|Ca, Wa)

where the odds ratios

PP9(a + 1, blca, wa)/PPS(a, bjca, wa) and PP(a, b + 1jca, wa)/PPS(a, blca, wa) reflect the changes in the chances of
player A winning when the score is updated after winning or losing the point, respectively. The count of 1 for
the point played is independent of the distribution of the remaining points after the point has been played, so, as

for moment genrating functions, we can factorize the expectations to obtain
E(et(1+Y pg(a+1,b|cA,WA))) = E(et)E(et(Y pg(a+l,b|cA,wA))) and
E(e t(1+Y pg(a,b+l|cA,wA))) = E(et)E(et(Y pg(a,b+1|cA,wA)))l

After some rearrangement we find that

PPI(a, blca, Wa)Mypgabicawa)(t)

= paE(eY)PPY(a + 1, blca, Wa)E(e!(Y PIErLICAWA))

+0aE(eYPPI(a, b + 1ica, Wa)E(el(Y Pa@bHLICAWA))

The only step that is left is the identification of the various terms in this expression as weighted moment
generating functions, to obtain

Wpg(a biea wa)()=Wrpp(oicawa) () Wypg(a+1.ieawa) () + W pp(ojea 12) () W pg(abrijca wa)(t)

Note carefully in this result how first we are able to multiply the weighted moment generating functions
on each path of this branching process which arises when scoring, because the steps on each branch are
independent; and then add the results of this multiplication, because the paths are mutually exclusive.

It fOIIOWS tha.t Wng(a,b|cA,WA)(t) = Ppg(a, blCA, WA)MY pg(a,b|cA,WA)(t)
where Mypgabcawa)(t) is the moment generating function of the random variable YP9(a, b|ca, Wa).

By successive differentiation with respect to t from the Theorem, and setting t = 0 we obtain the
following recurrence formulas.

w1(YPI(a, bjca, Wa)) = pawa(YP9(a+ 1, b|ca, Wa)) +qawi(YP9(a, b+ 1|ca, Wa)) +paPPé(a+ 1, bjca, wa) + gaP
P(a, b + 1lca, Wa)

wa(YPI(a, blca, Wa)) = pawz(YP9(a+l, bjca, Wa))+qaw2(YP9(a, b+lica, Wa))+2pawa(YP(a+ 1, blca, Wa)) +
29aW1(YP9(a, b + 1|ca, Wa)) + paPP(a + 1, bjca, Wa) + gaPP9(a, b + 1|ca, Wa)

w3(ng(a, blCA, WA)) = pAW3(YF’9(a+1, b|CA, WA))+qAW3(ng(a, b+1|CA, WA))+3pAW2(ng(a+ 1, blCA, WA)) +
39awW2(YP9(a, b+ 1|ca, Wa))+3pawi(YP(a+ 1, bjca, wa))+3gawi(YP9(a, b+ 1|ca, Wa)) + paPPé(a + 1, blca, Wa) +
qAPPQ(a, b+ 1|C/.\, WA)

wa(YPI(a, blca, Wa)) = pawa(YP(a+l, bjca, Wa))+qaws(YP9(a, b+1lica, Wa))+4paws(YP(a+ 1, blca, Wa)) +
4qaws(YP9(a, b+ 1lca, Wa)) + 6pawo(YP9(a+ 1, blca, Wa)) + 60aw2(YP9(a, b+ 1|ca, Wa))+4pawi(YP9(a+1, b|ca,
Wa))+4qaw1(YP9(a, b+1|ca, Wa))+paPP9(a+1, b|ca, Wa)+ qaPPé(a, b + 1|ca, Wa)

Boundary Values:

wn(YP9(a, blca, Wa)) =0, ifa=4and0<b<2;b=4and0<a<2

w1(YP9(3, 3|ca, Wa)) = ZpZA/(ZpZA—ZpA+1)2

Wz(ng(?w, 3|CA, WA)) = 4p2A(1—2p2A+2pA) / (2p2A—2pA+l)3

W3(ng(3, 3|CA, WA)) = 8p2A(4p4A—8p3A—4p2A+8pA+1)/(2p2A—2pA+1)4

W4(ng(3, 3|CA, WA)) = 16p2A(1—2p2A+2pA)(4p4A—8p3A—16p2A+20pA+1)/(2p2A—2pA+1)5

Similar recursion formulas with boundary values can be obtained for wn(YP%(a, b[ca, 14)).

Let Mypgeabica)(t) represent the moment generating function of the number of points remaining in a game at point
score (a, b) for player A serving.
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Using the rule for combining weighted moment generating functions with mutually exclusive
conditions we obtain Mypgabiea)(t) = Wypgabcawa)(t) + Wypgabiata)(t) since the probability that a game will
eventually end is 1.

Converting moments to parameters of distribution (mean, variance, coefficients of skewness and excess
kurtosis) can readily be obtained.

Similar formulas and parameters of distribution can be obtained for when player B is serving such that
Wy pg(abicawe)(t) and Wpgeanies ig)(t) represent the weighted moment generating functions of the number of points
remaining in the game from score line (a, b) given player B is serving and player B wins and loses the game
respectively.

b) Number of points in a tiebreak game
The analysis of a tiebreak game is similar to that of a standard game except that it is necessary to allow
for the rotation of service before each odd point in the tiebreak game.

¢) Number of points in a tiebreak set

We study here the model for a tiebreak set. To account for the rotation of service in this type of set it is
necessary to allow for the rotation of server at the beginning of each game. Using this convention, whenever a
tiebreak game is required to resolve the winner of the set, this tiebreak game is marked to the server of the first
point of the game, and hence to the server of the first point of the set when it comes to determining the first
server of the next set. This rule applies irrespective of the outcome of the tiebreak game.

For player A serving in the first game of the set there are four cases to be dealt with separately. Consider
the case where player A not only serves in the first game of the set, but wins the set, and serves in the first game
of the next set.

Let Wpst (0,0:c.disawana)(t) represent the weighted moment generating function of the number of points
remaining in a tiebreak set at point and game score (0, 0 : ¢, d) given player A served first, wins the set and is
serving first in the next set to be played. Then by considering a complete game being played at that score we
obtain, forc +d <12

W psT(0,0:c.disAwAnA) (£) =Wy pg(0,01cawa) (1) Wy pst(0,0:c+1,disawa,na) (D) F Wy pg,01ca, 1a) () WypsT(0,0:c.d+ 158 wana)(t), Tor (c
+d) mod 2=0
WpsT(0,0:c,disAwana) (1) =Wy pg(0,01c8,18)(£) WypsT(0,0:c+1,disa,wa,na) (£) FWypg (0,018, we) () W psT(0,0:c.d+1sawana) (1), for (c
+d) mod 2=1

There is a special case for the tiebreak game, with ¢ = 6, d = 6, where due to the rotation of serve player A cannot
serve first in the next set, so
WypsT (0,0:6,655awAna)(t) = 0, which simplifies to Wypgr (0,01cawa)(t)=0

d) Number of points in a best of 5 all tiebreak set match

Because we have to take into account both the winner of the current set and the server at the start of the next
set, the recurrence formulas have to allow for four-way branching rather than the two-way branching that we
have previously met.

For player A winning the match and currently serving,
Wy pm5T(0,0:0,0:¢,ficA wa) () = WypsT(0,0:0,0isAwA nA) (1) Wy pm5T(0,0:0,0:e+1, flea,wa) (1) +WypsT(0,0:0, 015 1A n) (1)
Wy pmsT(0,0:0,0:e,F+1/cAwA) (1) W psT(0,0:0,05A,wA,nB) (1) Wy pmsT(0,0:0,0:e+1, e wa) (1) Wy psT(0,0:0,015a,1a,08) (1)
Wy pm5T(0,0:0,0:¢,f+11c8,wA) (t)

The total number of points played in a tennis match has a discrete distribution. The moments of this
distribution can be calculated using a lattice model with the Markov property and a few other modest
assumptions. The Normal distribution has been widely studied, and tables of the probabilities for this distribution
are readily available. The basic idea of the Normal Power approximation is to use these probability tables to
estimate the tail probabilities of other distributions. This method uses the first four moments and produces a
continuous approximation to the cumulative distribution.
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The Normal Power approximation has a weakness in that it can fail when fitting distributions that have
exponential tails. This weakness is exposed when attempting to fit the distribution of points in an advantage set
where the number of games is not finite.

The Normal Power approximation has another weakness in that it can fail when fitting distributions
that are multimodal. Therefore, special steps must be taken when estimating the distribution of points in a tennis
match. The key observations are that the distribution of points in a tie-breaker set is unimodal, and the number
of games is finite. The Normal Power approximation can be safely used to estimate this distribution. The quality
of this estimate can be checked using simulation. The distribution of points in 3 set endings, 4 set endings and 5
set endings are each unimodal in a best of 5 set all tie-breaker match, as they inherit the properties of a single
tie-breaker set. Each of these distributions can be estimated, and the distribution of points for the complete
match can be obtained by weighed addition, where the weights to be used are the probabilities of each type of
ending.

Let X be a random variable with a cumulative distribution F(x), so that P(X > x) = F(x)

Let pu, o, y1, y2 be the mean, standard deviation, skewness and excess kurtosis of X. Let Z be a standardized
random variable with mean 0 and standard deviation 1, with

P(Z >z)=P(X >x)

Denote the cumulative Normal distribution by ¢(.). Then the Normal Power approximation can be written as

F(x) = o(y)
with
z=(x—p)/o
and

y=2z— 1/6 y1(22 — 1) — 1/24 yo(z® — 32) + 1/36 y:2 (42 — 7z)

3. RESULTS
1. Firstly, we consider an ‘average’ or ‘typical’ men’s singles match with pa = 0.66 and pg = 0.62. These
(pa, pB) parameters represent an ‘average’ match in Grand Slam men’s tennis and are particularly
relevant for the US Open or Australian Open. The results for such a match are given in Table 1 for
player A serving first in the match. Columns 2-6 in the tables are exact results (from the methodology).
They were checked against the equivalent (exact) best of 3 tiebreak sets results in Pollard (1983).

B5 sets P(A wins) | Mean | Efficiency | Stand Dev | Skew | CD95 | CD99 | CD99.5
Ad games | 0.734 261.22 0.52 61.26 0.14 | 362 394 405
No-Ad 0.719 232.13 0.51 53.23 0.11 | 319 346 354
No-Ad* | 0.728 247.58 0.52 57.15 012 | 341 370 379
50-40 0.718 198.50 0.59 46.27 013 | 274 299 307
50-40* 0.730 217.55 0.61 51.29 0.14 | 302 329 339

Table 1 Characteristics of a best of 5 tiebreak sets match when pa=0.66 and pg=0.62

The more relevant observations that can be made from Table 1 include

1. The 50-40 and 50-40* games, whilst producing more efficient match systems than the other game
structures, reduce the mean duration by an amount that would appear to be excessive and undesirable
for Grand Slam tennis.

2. The probability that player A wins the match is slightly reduced (relative to Ad games) when No-Ad*
is used and reduced further under the No-Ad system.

3. The No-Ad and No-Ad* games produce similar efficiencies to the present matches using the Ad game.
They reduced the means, the standard deviations, the skewness and the CDs.

4. The No-Ad* game produces a best of 5 set scoring system with characteristics roughly midway between
those of the Ad game and the No-Ad game. Its mean duration is 13.6 points fewer than the present
system, and its CD99.5 is 26 points smaller. It might be considered a useful solution to the issue being
studied in this research.
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2. Secondly, we consider a men’s singles Grand Slam match in which the advantage of serving for both
players are less than the Grand Slam average. These parameters could represent a typical match at the
French Open between two players with weaker or less successful serves. Table 2 gives the relevant
characteristics.

B5 sets P(A wins) | Mean | Efficiency | Stand Dev | Skew | CD95 CD99 | CD99.5
Ad games | 0.741 260.68 0.58 61.82 0.15 | 363 396 407
No-Ad 0.721 229.69 0.55 52.92 0.11 | 316 343 352
No-Ad* | 0.732 245.74 0.57 57.13 0.13 | 340 368 378
50-40 0.715 196.29 0.60 45.68 013 | 271 295 304
50-40* 0.728 215.15 0.63 50.71 0.14 | 299 326 335

Table 2 Characteristics of a best of 5 tiebreak sets match when pa=0.62 and pg=0.58

Whilst all of the observations made with respect to Table 1 apply also to Table 2, perhaps the most
relevant comparison is the observation that P(A wins) decreases for both the 50-40 and the 50-40* games relative
to Table 1 (whilst it increases for the other types of games). This is not a surprise as the advantage of serving is
reduced with these parameter values.

3. Thirdly, we consider a men’s singles Grand Slam match in which the advantage of serving is greater
than average. These parameters could represent a typical match at Wimbledon between two players
with stronger or more successful serves.

B5 sets P(A wins) | Mean | Efficiency | Stand Dev | Skew | CD95 CD99 | CD99.5
Ad games | 0.725 263.30 0.45 60.98 012 | 364 394 404
No-Ad 0.717 236.11 0.46 53.86 011 | 324 350 359
No-Ad* | 0.723 251.03 0.46 57.50 0.11 | 345 373 382
50-40 0.721 201.50 0.57 46.97 0.13 | 279 303 312
50-40* 0.732 220.49 0.57 51.87 0.14 | 306 334 343

Table 3 Characteristics of a best of 5 tiebreak sets match when pa=0.70 and pg=0.66

Whilst all of the observations made with respect to Table 1 apply also to Table 3, perhaps the most
relevant comparison is the observation that P(A wins) increases for both the 50-40 and the 50-40* games relative
to Table 1 (whilst it decreases for the other types of games). This is not a surprise as the advantage of serving is
enhanced with these parameter values.

4, CONCLUSIONS

The statistical characteristics of five different best of 5 tiebreak sets scoring systems have been studied. The aim
of the study was to see whether there was an alternative to the present system using advantage games that might
lead to less occurrences of very long matches and thus might be of use in Grand Slam tennis. Several measures
for comparing tennis scoring systems have been outlined.

The effect of five different types of games within the best of five sets structure has been analysed. The
types of games included the Ad game and the No-Ad game as defined in the Rules of Tennis. The No-Ad* game
was also considered. In this game the best of three points is played if deuce is reached. The 50-40 game in which
the server needs to win 4 points whilst the receiver needs to win just 3 points in order to win the game, was also
considered. The 50-40* game, a modification of the 50-40 game in which the best of 3 points is played if 40-
30 is reached, was also considered.

Whilst the 50-40 and 50-40* games were shown to be typically quite efficient for many matches and
very effective at reducing match length, they would appear to ‘go too far’ for consideration at the Grand Slam
level. Further, they may appear problematic to some players due to their “‘unbalanced’ structure.

The No-Ad*, having characteristics somewhere between the Ad game and the No-Ad game resulted in a useful
decrease in the number of very long best of 5 tiebreak sets matches. It would appear to be a useful addition to
available tennis scoring systems.
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Abstract

In Grand Slam Main Draw tennis matches, tennis balls are replaced after the first seven games and thereafter
every nine games (ITF, 2022). Over the duration of these seven/nine games, tennis balls degrade (Steele, 2006).
A prominent feature of this degradation process is the change in ball “fluffiness”, which is attributed to the fibres
on the surface of a tennis ball standing up after repeated ball impacts and in doing so changing the aerodynamic
characteristics of the tennis ball (Mehta, 2001). Specifically, it has been demonstrated that the fluff on a tennis
ball has a major influence on a tennis ball’s drag coefficient. The tennis ball drag coefficient is a dimensionless
constant used to quantify the drag resistance through air of a moving ball, as defined within established tennis
ball trajectory equations of motion (Cross, 2020). Using Hawk-Eye spatiotemporal ball motion tracking data
collected from the 2022 Australian Open, this study presents methods to deconstruct ball trajectory time histories
into equations of motion to estimate the variation in the drag coefficient throughout the duration of a tennis
match. Using these methods and focusing on the serve, it was found that in general there was a gradual increase
in the ball drag coefficient with usage, followed by a noticeable step change reduction in the drag coefficient at
the changeover between old and new balls. The presented methods and findings can be used by a variety of
tennis stakeholders, including tennis ball manufacturers/tournament organisers to monitor the degradation of
tennis balls during tournament match play; and tennis players/coaches wishing to better understand the expected
change in ball behaviour after the match umpire announces for “new balls, please”.

Keywords: Tennis ball, drag coefficient, fluffiness, ball trajectory, spatiotemporal data
1. INTRODUCTION

As per the official International Tennis Federation (ITF) rule book for Grand Slam tennis events, six tennis balls
are provided for each Main Draw tennis match, which are then replaced with new balls after the first seven
games (including warm-up) and thereafter every nine games (ITF, 2022). The changeover to new balls is
announced by the chair umpire, prompting the opening of the vacuum sealed cans containing the new balls. The
significance of this change to new balls is highlighted by the accepted tennis etiquette for the server of the next
game to hold the ball aloft and make the receiver aware of the incoming new balls.

Over the duration of game play, new tennis balls will degrade due to a combination of factors (Steele, 2006).
A major contributing factor to ball wear is repeated ball impacts with the racket and the court during play. Ball
wear can be materialised through a decrease in ball stiffness, loss of ball mass and most notably the change in
surface condition of the ball. The change in surface condition is commonly referred to as ball “fluffiness” and is
attributed to the fibres on the surface of a tennis ball standing-up after repeated ball impacts and in doing so
changing the aecrodynamic characteristics of the tennis ball (Mehta, 2001).

One of these aerodynamic properties is the tennis ball’s drag coefficient; a dimensionless constant used to
quantify the drag resistance through air of a moving ball, as defined within established tennis ball trajectory
equations of motion (Cross, 2020). An increase in a tennis ball’s drag coefficient results in the ball slowing down
through the air, causing the ball to land at a shallower distance into the court and extending the required reaction
time of the receiver.

Measuring a ball’s drag coefficient can be accurately calculated under controlled wind tunnel test
environments, such as the testing arrangements used in Mehta (2001) and Goodwill (2004). The estimated drag
coefficient of new tennis balls from these studies were found to be in the range of 0.6 to 0.7. The testing by
Mehta (2001) indicated that partially worn tennis balls resulted in an increase in drag coefficient, however both
Mehta (2001) and Goodwill (2004) also found that heavily worn tennis balls resulted in a decrease in drag
coefficient relative to new tennis balls. Flow visualisation studies by Mehta (2001) indicated that for tennis ball
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speeds representative of match-play, the ball exhibited behaviour consistent with the transcritical flow regime
(approaching independence of Reynolds Number) which is supported by the finding in both Mehta (2001) and
Goodwill (2004) that the drag coefficient was generally independent of speed, with only a small decline with
increasing ball velocity. This small decline in drag coefficient has been attributed to the flattening of the fibres
on the surface of a tennis ball with increasing ball speed. Goodwill (2004) also investigated the effect of a
spinning tennis ball, identifying an increase in drag coefficient associated with increasing spin rates.

Cross (2014) attempted an alternative approach to wind tunnel testing by firing new tennis balls from a ball
launcher and measuring the speed of the balls at defined locations using video cameras, and then estimating the
drag coefficient based on the trajectory equations of motion. The study found significant shot-to-shot variation
in the measured drag coefficient, with measurements ranging between 0.45 to 0.57. However, the measurements
remained lower than the drag coefficients derived from wind tunnel tests. The study also found that the drag
coefficient was independent of the tennis ball speed and spin (in contrast to the wind tunnel studies).

A similar approach is required to measure a tennis ball’s drag coefficient in tournament match play via the
use of spatiotemporal ball motion tracking data. Choppin (2018) attempted to measure tennis ball drag
coefficients using Hawk-Eye tracking data from Davis Cup and Fed Cup matches. Using the Hawk-Eye data,
Choppin (2018) calculated the average horizontal deceleration of the tennis ball in the period from racket impact
until contact with the court. The method made several simplifying assumptions, most notably not capturing the
effect of spin. However, the findings of the study did estimate a 4% increase in the drag coefficient for used
balls relative to new balls.

This study extends the methods used in Cross (2014) and Choppin (2018), by estimating the drag coefficient
of a tennis ball from fitting trajectory equations of motions in 3 degrees of freedom to Hawk-Eye trajectory time
histories. Importantly, these trajectory equations of motion also account for both topspin and sidespin, extending
the application of the methods to any arc trajectory encountered in a tennis rally.

2. METHODS

The following presents a methodology to minimise the difference between the ball trajectory measured by
spatiotemporal data and that predicted by equations of motion, and in doing so enable the prediction of ball
motion properties including the ball drag coefficient from tournament match play.

SPATIOTEMPORAL DATA

For this study, Tennis Australia have provided access to Hawk-Eye spatiotemporal ball tracking data from the
2022 Australian Open (Men’s and Women’s Singles). The provided Hawk-Eye data enables the computation of
the time varying motion of a tennis ball in 3 degrees of freedom, as per the global coordinate system presented
in Figure 1. Considering a defined time-step, the location of the tennis ball in the X-Y-Z coordinate space as
predicted by the Hawk-Eye system can be identified at discrete moments in time.

Plan View

Side/Elevation View

Z
;o X

v

Figure 1: Global Coordinate System
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EQUATIONS OF MOTION
The trajectory of a tennis ball can be calculated based on the gravitational and aerodynamic forces acting on a
tennis ball (Cross, 2020) and assuming no other external forces, e.g. wind. From Cant (2020), this force balance

in 3 degrees of freedom can result in the derivation of the following equations of motion for the trajectory of a
ball:

C
dvx/dt = —k‘l} [CDUx - EL ((vaz - (A)Zvy)] (1)
d C
Vy/dt = —kv [CDvy - EL ((‘)zvx - wxvz)] (2)
d C
vz/dt = —g—kv [CDUZ_EL(wxvy —a)yvx)] (3)

where:
v = the absolute velocity of the tennis ball
y, Uy, U, = the velocity of the tennis ball in the X, Y, Z axes respectively
w = the absolute angular velocity of the tennis ball
Wy, Wy, W, = the angular velocity of the tennis ball in the X, Y, Z axes respectively
g = gravitational acceleration
k = ball constant
Cp = drag coefficient
C,, = lift coefficient

The ball constant k is defined as:

(4)

where:
p = density of air
R =radius of tennis ball
m = mass of tennis ball

The drag coefficient, Cp, is assumed independent of speed and spin (Cross, 2014). However, there is potentially
some variation with Reynolds Number and Spin Parameter (Goodwill 2004). The lift coefficient, C; , has been
found to be linearly proportional to the Spin Parameter, S (Cross, 2014):

C,=CS (5)
where:
R
v

The equations of motion, Eq. (1)-(3), can be solved numerically based on an assumed set of initial conditions:
e An initial ball position in X, Y, Z coordinate space, x,, ¥, Zo-
e Aninitial ball speed, v,.
e Ball topspin, 6, and sidespin, ¢, assumed constant through the trajectory.
e Aninitial launch angle 3, (relative to the horizontal plane) and launch heading, y, (relative to the
vertical plane) to translate the initial ball speed and spin into translational and rotational components

in the X, Y, Z axes, Vyg, Vy0, Vz0, Wx0) Dy Dzo-

yOl yOl

The translation of the ball topspin and ball sidespin into the rotational velocities required by Eq. (1)-(3), is
achieved by the following transformation (Ivanov, 2021):

wy = @ sin(p) (7)
wy = 0 cos(y) — ¢ cos(B) sin(y) (8)
w, = 0sin(y) + ¢ cos(B) cos(y) (9)
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OPTIMISATION

Assuming a fixed time-step, Eq. (1)-(3) can be solved numerically based on an assumed set of initial conditions
for every arc trajectory of a tennis ball (e.g. from racket contact to impact with court, or from bounce off the
court to racket contact). The initial ball position x,, ¥y, Zy, as well the initial launch angle 8, and heading y, can
be derived from the Hawk-Eye ball trajectory data. However, the numerically solved trajectory can be varied
based on the selection of the initial ball speed v,, the topspin 8, the sidespin ¢, the drag coefficient Cp, the lift
coefficient C; and the ball constant k. The ball constant k can be assumed based on the manufacturer
specification for the ball properties (mass and diameter), whilst acknowledging there may be small variation
from ball to ball. The remaining 5 parameters can be passed into an optimisation algorithm to minimise the
mean-absolute-error between the Hawk-Eye trajectory and the numerically derived trajectory across all time-
steps of the trajectory arc. This minimising optimisation was done using the SciPy python package,
implementing the “Powell” method that is based on the methods from Powell (1964).

This optimisation can be done on every arc trajectory defined in the Hawk-Eye data. However, for the
purposes of investigating the drag coefficient and specifically the new ball effect, this study investigated the
predicted drag coefficient on serves greater than 50 m/s (180 km/h) in Men’s Singles matches. The intention of
this restriction is to isolate the data set to fast flat serves only, removing any potential dependency of speed and
spin on the drag coefficient. Focusing the study on a specific shot type will assist in isolating variation in drag
coefficient to ball degradation. Further investigation of the drag coefficient and lift coefficient predicted by these
methods for all shot types is warranted as a future study. For instance, a kick serve with heavy spin would have
an increase in lift coefficient that may make the ball more “livelier” in lateral directions.

3. RESULTS
Using the optimisations methods, Figure 2 presents an example of the data fitting between the Hawk-Eye

trajectory and the numerically derived theoretical trajectory solution, with the very close match demonstrating
the effectiveness of the optimisation algorithm in finding a solution to match the Hawk-Eye trajectory.

/

« Hawk-Eye
Trajectory Estimate

Figure 2: Example Trajectory Fitting

To examine the estimated drag coefficients in more detail, a representative Men’s Singles match was
selected that extended to 5 sets. Throughout the match, 7 different batches of tennis balls were used, with new
balls called for by the umpire on 6 occasions. The drag coefficient estimation method was applied to every serve
of the match of speeds greater than 50 m/s. Segregating each of these serves to their game number of use between
1 to 9, Figure 3 presents the drag coefficient estimate distributions. The figure indicates the trend of a progressive
increase in drag coefficient with game number, with the highest rate of increase occurring in the earlier games.
The variation in the drag coefficient within each game is indicative of the differing ball properties, surface
condition and asymmetry of each ball played due to their varying accumulated use.
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2022 Australian Open: Representative 5-set Men's Singles match
In-Play Serves greater than 50 m/s
Drag Coefficient Variation with Game Number
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Figure 3: Drag Coefficient Variation with Game Number

Reviewing these serve drag coefficient estimates as a time history (using the match rally number as the time
scale) enables highlighting the specific trends associated with the changeover to new balls. An example of this
is shown in Figure 4, presenting the drag coefficient estimates from every serve with speed greater than 50 m/s
from the third set of the match. New balls were called for by the umpire in the 5" game of the set, with the
following two games characterised by serve drag coefficients between 0.475 and 0.55, on the lower end of the
distribution relative to the rest of the match. With these lower drag coefficients, all other things being equal (e.g.
no racket/string changes) the ball will tend to fly further and faster due to the lower drag resistance. Hence, if
adjusted for correctly by a player, lower ball drag coefficients can reward aggressive play as opponents will have
less time to react. Interestingly, there was rapid degradation of the tennis balls after these 2 games. Rapid
degradation can be the result of extended rallies or due to players playing with high shot heaviness (combination
of speed and spin).

2022 Australian Open: Representative 5-set Men's Singles match (Set 3)
In-Play Serves greater than 50 m/s

0.650

In-Play Serves > 50 m/s
. (Serve Speed Indicated)
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—
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Figure 4: Drag Coefficient Variation during Set 3 of Representative 5-set Men’s Singles Match
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4. DISCUSSION

The drag coefficient results derived from the representative Men’s Singles match demonstrated the step change
reduction in drag coefficient with the changeover to new balls, as well as the gradual increase in drag coefficient
with ball usage. This was a consistent trend across all matches that were assessed, albeit there was variance in
the response that can be attributed to differences in ball properties and other variables such as the environment
(temperature and humidity).

This information when viewed across the tournament can provide useful feedback for tennis ball
manufacturers. Ball degradation is an accepted phenomenon of the sport (hence the official rule to change the
balls after every 9 games), however, developing balls with a consistent specification and performance is assumed
to be a targeting trait for manufacturers to gain approval from professional tennis players.

Professional tennis players can also use this information to adequately prepare for forthcoming matches.
This may include developing strategies with respect to changing rackets with modified string tension to
counteract the ball flying longer with new balls or at the very least awareness of this step-change in ball
behaviour. From the perspective of the receiver, awareness of the reduction in reaction time may dictate court
positioning when receiving to new balls.

Aside from the drag coefficient, deconstructing the ball trajectory time histories into equations of motion
also enables the estimation of other trajectory parameters, including the lift coefficient and the ball topspin and
sidespin. The lift coefficient quantifies the influence of the Magnus Effect (sideways force) of the spinning tennis
ball, whilst differentiating between topspin and sidespin provides a more complete description of how spin
influences the ball trajectory. As such, decomposing a ball trajectory into trajectory equations enables a higher
fidelity interpretation of an executed shot. The effect of a small variation in any of the trajectory variables can
then be investigated individually. The trajectory equations can also be extrapolated to answer hypothetical
scenarios, for example, whether a volleyed ball would have landed out.

This paper has focused on the ball motion through the air, however, there is also the ball dynamics through
impact with the racket and the court that could also be influenced by ball degradation (Steele, 2008). The ball
motion into and out of the bounce as characterised by the spatiotemporal data could be used to calculate the
ball’s coefficient of restitution and coefficient of friction with the court using bounce equations such as those
presented (Cross, 2020). Specifically, the ball’s coefficient of restitution, the ratio of vertical velocity outbound
and inbound of the bounce, could be investigated for evidence of association with ball degradation.

The methods presented in this paper are dependent on the accuracy of the spatiotemporal data from which
the trajectory solution is being attempted to replicate. The methods presented are agnostic to the spatiotemporal
data capture technology used. However, Hawk-Eye Technologies has an established presence in professional
tennis through their electronic line-calling and broadcast applications. Hawk-Eye have previously indicated a
mean error of 2.6 mm for their electronic line calling technology (Hawk-Eye Innovations, 2016), however, there
has been no published results for the accuracy of the entire Hawk-Eye ball trajectory prediction.

Another potential source of error in the calculations is due to the assumed properties of the tennis balls. The
manufacturer specification for the ball properties (mass and diameter) can provide a baseline assumption.
However, there will be variation from ball to ball, and it is currently not possible to identify the exact ball used
(and the associated properties) for every shot played in a tennis match.

5. CONCLUSIONS

This paper has presented a method to deconstruct ball trajectory time histories into equations of motion, with
the focus of the study to estimate and discuss the estimated drag coefficient from match-play. However, this
method can be equally used to extract and investigate other properties from the ball trajectory, including the lift
coefficient and the different types of spin on the ball. Furthermore, the methods can be used for other applications
such as trajectory extrapolation, e.g. enable prediction of whether a volleyed ball would have landed out.

Considering fast flat serves greater than 50 m/s (180 km/h) in Men’s Singles matches from the 2022
Australian Open, it was found that in general there was a gradual increase in the ball drag coefficient with usage,
followed by a noticeable step change reduction in the drag coefficient at the changeover between old and new
balls. This information can be used by tennis ball manufacturers/tournament organisers to monitor the
degradation and consistency of tennis balls during tournament match play. Whilst tennis players/coaches can
also use this information to adequately prepare for forthcoming matches by ensuring they have developed
strategic plans to adjust or counteract the effect of the step change reduction in drag coefficient associated with
new balls.
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Abstract

Electronic performance & tracking systems (EPTS) are commonly used to track the location and velocity of
athletes in many team sports. A range of associated applications using the derived data exist, such as
assessment of athlete characteristics, informing training design, assisting match adjudication and providing fan
insights for broadcast. Consequently the quality of such systems is of importance to a range of stakeholders.
The influence of both systematic and methodological factors on this resulting quality is non-trivial.
Highlighting these allows for the user to understand their strengths and limitations in various decision-making
processes, as well as identify areas for research and development. In this paper, a number of challenges and
considerations relating to the determination of EPTS validity for team sport are outlined and discussed. The
aim of this paper is to draw attention of these factors to both researchers and practitioners looking to inform
their decision-making in the EPTS area. Addressing some of the posited considerations in future work may
represent best practice; others may require further investigation, have multiple potential solutions or currently
be intractable.

Keywords: GPS, computer vision, performance analysis, coaching, validation
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Otherside — Using Expected Points to Evaluate Defensive Actions in Australian

Rules Football
Liam Crowhurst °, Robert Nguyen *

a University of New South Wales

Corresponding author: liam.m.crowhurst@gmail.com

Abstract

Expected points are a measure of the quality of an attempted shot on goal. Typically, expected points
are calculated using covariates such as field location, shot context, type of shot among other things.
Summary statistics of expected scores can provide additional context to results, insights into general
shot quality and a team’s overall effectiveness in front of goal.

Recently, European Football has looked at assigning a similar metric to keepers, known as expected
saves, however an equivalent metric has not been developed for Australian Rules Football. Firstly,
we have developed a reproducible and publicly available expected points model for Australian Rules
using a ‘play by play’ dataset recently released online. Secondly, we use the ‘play by play’ dataset to
extract defender actions and their effects to derive a new metric, defensive points saved. Lastly, we
produced interactive visual maps that allow analysts, media and fans to explore the data, providing
visual context to analytical insights,

Keywords: expected points, generalised additive models
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