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Science, U. Western Australia, Perth, 1966; Doctor of Philosophy, U. NSW, Canberra, 

1974. 
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Secondary school educator, NSW Department Education, 1960-1961; lecturer, 

senior lecturer, Royal Military College, Duntroon, Australia, 1962-1985; senior 

lecturer, Australian Defense Force Academy, Canberra, 1986-1989; associate 

professor mathematics, Bond U., Gold Coast, Australia, since 1990. Director 

Australian Capital Territory Mathematics Center, Canberra, 1975-1980. 
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Neville John de Mestre has been listed as a noteworthy Mathematics educator by 
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Adrian Schembri, Keynote Speaker at Mathsport 2022  

MENTAL HEALTH IN SPORTS 
The psychological wellbeing and mental health of athletes presents unique challenges. Whilst 

athletes often report high life satisfaction, mental health difficulties remain prevalent given the 

high pressure and stressful environment that accompanies their pursuits. In this keynote talk, Dr 

Schembri will present on the prevalence of mental health issues among elite athletes. Wellbeing 

and mental health will be discussed from a lifespan perspective, considering challenges for 

young athletes as they emerge in their sport, unique challenges during an athlete's elite career, 

and risks to mental health following retirement. Provision of clinical care will be discussed. Dr 

Schembri will present perspectives of both prevention and intervention with regard to athlete 

mental health, including strategies for increasing mental health literacy, and identifying signs and 

triggers of mental health issues. 

Dr Adrian Schembri is a Clinical Psychologist and Director of Welcome to Pod, a clinical 

psychology practice located in Richmond, Victoria. Adrian specialises in the treatment of adult 

mental health issues, including depression, anxiety, grief and adjustment. Adrian has a specific 

interest and experience working with men on their mental health, with a focus on relationship 

issues, communication at home and in the workplace, work life balance, executive coaching and 

supporting individuals with their navigation of complex and often overcrowded lifestyles. 

Adrian completed a Doctorate in Clinical Psychology in 2010 and has since worked 

clinically and in academic and corporate settings. He has published peer reviewed articles and 

conference papers in the areas of clinical psychology, educational and developmental 

psychology, sports psychology and neuropsychology. 

Whilst working as Director of Clinical Science at Cogstate, he supported the AFL and 

NRL with training club doctors on the administration and interpretation of cognitive tests used to 

guide return-to-play decisions following a concussion. Within his clinical work, Adrian 

frequently works with elite athletes during adolescence and early adulthood, and also supports 

retired players who are struggling with their mental health. 

Adrian is a member of the Australian Psychological Society (APS) College of Clinical 

Psychologists and the Australian Clinical Psychology Association (ACPA). 

Tim Neville, Keynote Speaker at Mathsport 2022 
THE NUMBERS SUPPORTING OFFICIATING IN THE AUSTRALIAN FOOTBALL 

LEAGUE 
Tim Nevile has extensive experience providing matchday coaching and feedback to AFL 

umpires. He has conducted initial assessment of performance to aid improvement of the national 

AFL umpiring group. In Queensland he has coached, assessed and mentored field umpires in the 

QAFL and QWAFL competitions. He as applied human factors theory and techniques to 

investigate team cognition in emergency management teams. He has conducted research in the 

use of procedures as a safety mechanism in the oil & gas industry. 
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UNDERSTANDING PRESSURE METRICS AND THEIR IMPORTANCE IN 

AUSTRALIAN FOOTBALL 

Steven Azzopardi a,c, David Carey a, Minh Huynh a, Brent Manson b 

 

a La Trobe University, Melbourne 
b Carlton Football Club, Melbourne 

c Corresponding author: steven.azzopardi99@outlook.com 

Abstract 

A team invasion sport involves a team in attack attempting to retain possession of an object leading to a score, 

with the defending team tasked with stopping them by applying pressure. The concept of pressure in team invasion 

sports is an important layer of detail to understanding the performance of teams, both in attack and defence. 

Quantification of the pressure applied to skill execution within matches has become increasingly common in 

invasion sports. This concept has been applied to professional Australian football in the form of ‘pressure acts’. 

This, along with other derived statistics, are used by coaches, analysts and media to compare teams during a 

match, or to contrast players over the course of a season. However, published research into the relevancy of 

pressure metrics and its correlation with team success in Australian football is scarce. Due to the varying game 

plans and tactics utilised by professional Australian football teams, the way in which teams apply pressure may 

differ. Conversely, the performance of teams may change due to the way the opposition apply pressure. In this 

study, we assess the application of pressure by professional Australian football teams based on the pressure acts 

they apply when in defence, along with the pressure acts applied by their opposition. The pressure behaviour of 

teams based on ladder position is compared to assess variations between the most winningest sides and the rest of 

the competition. By calculating pressure points gained per minute of opposition possession, insight can be gained 

as to whether winning teams apply more pressure than their opponents. The first prototype of an expected pressure 

model – xPressure – is devised as a way to measure a team’s defensive pressure against what is expected based 

on the actions of their opposition. 

Keywords: AFL, Australian football, pressure acts, expected pressure 

1. INTRODUCTION  

Australian football has previously been dubbed the “most data rich sport” in the world (Watkins, 2016). This is 

due to the extraordinarily large number of statistics which can be collected from one match. The publication of 

basic statistic counts for Australian football can be traced back to the 1950s ("Second semi-final story in figures," 

1953), and has continued to increase in prevalence and detail since. Statistics captured by the Australian Football 

League’s official data provider (Champion Data) are extensively used by clubs, media and the general public. 

This includes the official AFL Player Ratings, fantasy ranking points such as Supercoach (Edwards, 2021; 

McIntosh et al., 2018), and basic counts of kicks and handballs in order to compare players and teams.   

 Physical pressure in team invasion sports is a tool used to assess the performance of the attacking team 

based on their reaction to the opposition’s defensive actions (Leite et al., 2014). Teams that apply more physical 

pressure tend to perform better through limiting their opposition’s ability to retain possession. Studies into the 

application of pressure in other sports, such as basketball (Leite et al., 2014) and association football (Çobanoğlu 

& Tereklİ, 2018) positively correlate defensive pressure with match success.  

 In response, Champion Data introduced ‘pressure acts’ (Watkins, 2016) – a metric designed to quantify 

the level of defensive pressure applied to the ball carrier. The inception of this metric provided an additional level 

of contextual detail to the data collected in Australian Football League games. For each disposal performed by a 

player in a professional Australian football match, one of six levels (set, none, corralling, chasing, closing and 

physical) is assigned to represent the amount of pressure applied to that disposal. Each level is pre-assigned a 

numeric value known as ‘pressure points’, ranging from 0.75 points for an instance of set pressure, up to 3.75 

points for physical pressure (including a tackle). This allows for derived metrics such as ‘pressure factor’ to be 

calculated to represent the pressure applied by a team within a match.  

 Pressure acts and other pressure-related variables have been used in published research related to 

Australian football (Ireland et al., 2019; Sullivan et al., 2014; Vella et al., 2021). However, research into pressure 

metrics and their correlation with long-term team success has not been published. The objective of this paper is 

to analyse the ways in which different professional Australian football teams pressure their opposition, and 

whether differences can be observed based on single match or full season success. This provides insight as to 
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whether the most winningest teams pressure, or are pressured, differently than less successful teams. 

 An aim of this work was to create a metric known as expected pressure – xPressure. This was designed 

in a similar manner as expected goals metrics in association football and ice hockey (Hamilton, 2011; Macdonald, 

2012; Rathke, 2017). The purpose of such a metric is to determine the level of pressure being applied by a team 

based on the actions of their opposition. The current metric used to compare the in-game pressure application of 

two teams, known as the pressure factor, computes how much pressure one team is applying based on the pressure 

points they accumulate during a quarter or a match. However, it does not consider the precise actions of their 

opposition. For example, if one team chooses to play an uncontested style of football with a focus on marking the 

ball and disposing from a set position, it does not allow much opportunity for the other team to apply high levels 

of pressure on the ball carrier. In this case, a relatively low pressure factor may still be indicative of strong 

defensive pressure in the situation. The adoption of an expected pressure metric would compare teams in-match 

with the historical pressure efforts of other teams in similar events to determine if their pressure application is 

above or below expectation.  

 

2. METHODS 

Match event data from all Australian Football League seasons from 2013 to 2019 inclusive, as collected by 

Champion Data, was used in this study. Finals and pre-season matches have been excluded, leaving twenty-two 

home-and-away season matches per team per season.  

 The data was filtered to only include events which are labelled with a pressure level. This includes 

kicks, handballs, tackles, dispossessions and pressure credits. Variables were added to clarify the team applying 

pressure and the team receiving pressure for each event. 

 The events were grouped twice based on team applying pressure, and team receiving pressure. 

PROPORTION Z-TESTS – TOP 8 VS BOTTOM 10  

The teams were separated based on their ladder positions at the end of the 2019 home and away season. In the 

AFL, the top eight teams qualify for the final series. The instances of each of the six pressure levels, both applied 

and received, were combined for the top eight and bottom ten teams. The proportions of each of the levels were 

compared between-groups using proportions z-tests to assess whether there were differences in the ways finals 

teams applied and received pressure compared with teams which didn’t qualify. 

PRESSURE PER MINUTE OF OPPOSITION POSSESSION  

For each 2019 season match, time in possession for each team was calculated by marking times in a match which 

would imply taking possession (including hard and loose ball gets, intercept marks, free kicks, kick-ins and hitouts 

to advantage) and times which would imply the end of a possession (including scores, free kicks against, the ball 

going out of bounds and errors). Using the included time variable in seconds format, the time of each team 

possession could be deduced and added to calculate how long each team had possession of the ball over the course 

of the match.  

 The pressure points accumulated by each team were summed and used to calculate the pressure points 

applied per minute of opposition possession. For example, if Team A had possession of the ball for a total of thirty 

minutes, and Team B gained six hundred pressure points throughout the match, we’d say that Team B applied 20 

pressure points per minute of opposition possession. From this, the individual team values from each game were 

assessed, along with team averages across the season.   

 For each match, the difference in pressure points per minute of opposition possession between the 

winning team and the losing team was calculated in search of a potential correlation between winning outcomes 

and pressure application.  

YEAR-TO-YEAR PRESSURE POINTS PER MINUTE  

The same process of calculating pressure points per minute of opposition possession was repeated for home-and-

away season matches for each season between, and including, 2013 and 2018. Individual team values and 

differences between winning and losing sides were compared across seasons using ridgeline plots to explore the 

changes in mean and spread. For the differences between two sides, matches which resulted in a draw were 

excluded.  

EXPECTED PRESSURE  

The 2019 data, including finals, was filtered to include only kicks (not grounds kicks) and handballs. Several 

multi-level models were built, with the best chosen based on respective R2 and Chi-Square statistics. The models 

used pressure points as the target variable, while including other relevant metrics and their interactions as 

explanatory variables.   
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 The chosen model was applied to each statistic in the 2019 data set. The expected pressure points for 

each team in each match were calculated to compare how teams applied pressure compared with the expectation. 

Comparisons were also made based on match result to assess whether winning teams were more likely to exceed 

expectation. 

3.RESULTS 

The proportions of instances of applied pressure which fell under each of the six pressure levels for the eighteen 

teams are displayed in Figure 1 for between-team comparison. Figure 2 shows the same data but representative of 

the pressure received by each team.   

 In 2019, St Kilda allowed their opposition the highest proportion of ‘set’ pressure (disposals taken from 

a mark, set shot, kick-in or free kick). Port Adelaide allowed the least. Geelong applied the greatest proportion of 

physical pressure (including tackles), with Fremantle applying the least.  

 West Coast were allowed the greatest proportion of set disposals, while Port Adelaide had the smallest. 

Geelong received the greatest proportion of physical pressure, while West Coast received the smallest.  

 Figures 3 and 4 show the z-scores and 95% confidence intervals for the proportions of each level, first 

applied, and then received, grouping the top 8 and bottom 10 teams respectively. For the pressure application data, 

the bottom 10 teams allowed a greater proportion of instances with no pressure compared with the top 8 teams. 

Top 8 teams applied a greater proportion of closing pressure than the bottom teams. No discernible difference 

Figure 2: The proportion of each pressure level received by AFL teams during the 2019 
home-and-away season 

Figure 1: The proportion of each pressure level applied by AFL teams during the 2019 
home-and-away season 
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could be concluded for the other pressure levels.   

 For the pressure received data, top 8 teams were allowed a greater proportion of play under set pressure. 

They also received a greater proportion of pressure being chased or closed. The bottom 10 teams were allowed a 

greater proportion of instances under no pressure, but also under physical pressure. No difference could be 

concluded for receiving corralling pressure.  

 Figure 5 highlights the spread of pressure point per minute of opposition values across the 2019 home-

and-away season. The average value was approximately 21.25 pressure points. Figure 6 shows the difference in 

pressure points per minute of opposition possession between the winning and losing side in each match. On 

average, the winning teams recorded approximately 1.74 more pressure points than their opposition. Both metrics 

follow a normal distribution.  

 Figures 7 and 8 repeat the analysis of pressure points per minute of opposition possession and the 

difference in this metric across all seasons from 2013 to 2019. There appears to be no discernible difference in 

pressure points per minute across the seasons. For the difference between teams, the values appear to be closer to 

zero during the 2013 season, however the spread appears to be similar across-seasons.  

 Table 1 outlines the final multilevel built to represent expected pressure, along with estimates and random 

effects in Figures 9 and 10.  

 Figures 11 and 12 give examples of the output of the expected pressure model when controlling for 

Figure 3: The z-scores (and 95% confidence intervals) from two proportion z-tests comparing 
the proportion of instances of applied pressure for each pressure level between teams in the 
top 8 and bottom 10 in 2019 

Figure 4: The z-scores (and 95% confidence intervals) from two proportion z-tests comparing 
the proportion of instances of received pressure for each pressure level between teams in the 
top 8 and bottom 10 in 2019 
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certain variables, along with the slight difference in output based on the team that is applying the pressure. 

Figure 13 shows, for each team in each match in 2019, the difference between expected pressure and actual 

pressure points (for handballs and standard kicks only). As expected, the average falls extremely close to zero due 

to the model being built on this data.  

 For each team, the percentage of their actual pressure points when compared to expected pressure was 

calculated. For example, if a team registered 550 pressure points but were expected to gain only 500, they would 

register 110% of expected pressure points. Figure 14 shows the difference in this figure between the winning and 

losing team in each match, followed by the two parties separated in Figures 15 and 16. On average, winning teams 

performed 0.8% better than their opposition. Winning teams exceeded their expected pressure in 107 of 207 

matches (51.7%), whereas losing teams did so in 96 matches (46.4%). 

4. DISCUSSION 

This work is the first to attempt an in-depth analysis of pressure metrics in Australian football and its correlation 

with long-term team success. This paper outlines an initial overview of the data and its potential applications.  

Figure 5: Density plot of all team match counts of pressure points 
applied per minute of opposition possession time during the 2019 AFL 
home-and-away season 

Figure 6: Density plot of the difference in pressure points applied per 
minute of opposition possession time (winner - loser) for each match 
during the 2019 AFL home-and-away season 

Figure 7: Density graphs of each count of pressure points per minute 
of opposition possession in AFL home-and-away matches, year-by-
year from 2013 to 2019 

Figure 8: Density graphs of the difference in pressure points per 
minute of opposition possession (winner - loser) from each AFL home-
and-away match (excluding drawn matches) between 2013 and 
2019, faceted by season 
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On first glance, the comparison of the eighteen AFL teams based on 

the pressure they received and applied throughout the 2019 season 

appears to have minor between-team difference. Picking out 

individual teams and their usage of certain pressure levels infers 

greater differences. Brisbane and Richmond applied the lowest 

proportion of the ‘none’ pressure level (allowing the opposition to 

dispose of the ball in open play under no immediate pressure). The 

two teams finished the 2019 home-and-away season 2nd and 3rd, 

respectively. Conversely, Melbourne and Gold Coast allowed the 

greatest proportion of ‘none’ pressure and finished the season 17th and 

18th, respectively.   

 Although this can be recognised for some pressure levels, it is not 

always the case. Despite finishing at opposite ends of the ladder, 

Geelong (1st) and Gold Coast received a higher proportion of physical 

pressure than any other teams. Differences in pressure level 

Table 1: The final multilevel model, predicting pressure 
points on a kick or handball using 2019 AFL data 

Figure 9: Forest plot of estimates from the chosen multilevel model 

Figure 10: Random effects from the chosen multilevel model 
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proportions, both applied and received, may not be 

impacted solely by team strength but by game style. 

Some teams may invite physical pressure from their 

opposition to free up space for their teammates 

further up the field. Other teams may choose to play 

a kick-and-mark style, which would lead to an 

increase in ‘set’ pressure received. Another variable 

which would affect this may be the field of play, as 

Australian football grounds at the elite level are not 

all of the same dimensions. Geelong plays the 

majority of its home matches at Kardinia Park, which 

has the smallest width of any venues used for AFL 

games in 2019 (Staff writers from Fox Sports, 2018). 

Geelong received and applied a higher proportion of 

physical pressure than any other team in the 2019 

season. Conversely, Fremantle and West Coast 

recorded the lowest proportions of physical pressure 

applied and were within the bottom four for physical 

pressure received. Both Fremantle and West Coast 

play their home matches at Perth Stadium, which has 

one of the largest playing areas of any regularly used 

venues. Although this remains one of several 

plausible factors, future work would endeavour to 

discern differences for teams who regularly play at a venue larger or smaller than normal to determine if playing 

surface makes a difference in pressure application.  

 The z-scores and their confidence intervals in comparing the difference in pressure applied and received, 

when grouping the top 8 and bottom 10, allowed for trends to be observed for teams that won the most games 

during the season. Teams in the bottom 10 allowed more instances of ‘none’ pressure than the top 8. This could 

be due to these teams focusing less on defending the ball carrier and choosing to stay close to other members of 

the opposition team. It may also be due to to their opposition having greater skill and, as such, being able to find 

more space while possessing the ball.   

 Top 8 teams applied more physical pressure, whilst bottom 10 teams received more physical pressure. 

This aligns with the notion that pressure is correlated with team success.   

 Bottom 10 teams happened to receive more ‘none’ pressure than top 8 teams as well as more physical 

pressure. This may be a sign of their opposition either choosing to physically pressure their opponent or, instead 

Figure 11: The expected pressure points based on field location, faceted 
by the source of possession, grouped by team, and controlling for disposal 
type (handball), time in relation to clearance (post-clearance) and how 
the chain started (centre bounce) 

Figure 12: The difference in expected pressure between handballs and 
kicks based on field location, faceted by the source of possession, 
grouped by team, and controlling for source of possession (loose ball 
get), time in relation to clearance (post-clearance) and how the chain 
started (centre bounce). 

Figure 13: The difference between expected pressure and actual pressure 
points (on opposition kicks and handballs only) for all teams across all 
2019 matches, including finals 

13



of corralling, chasing or closing, opting to defend space 

further up the ground and allowing for the ball carrier to 

dispose of the ball under less duress. In theory, this 

could allow for the ball to arrive at a contested area 

further up the field.   

 By calculating the difference in pressure points 

per minute of opposition possession for each home-and-

away match, it appeared to be most common for the 

winning side to record a higher frequency of pressure 

points. Due to the way pressure points are calculated in 

a discrete manner, stronger teams having more set shots 

at goal, which allow for approximately 30-45 seconds 

of possession time before disposal and the lowest 

assignment of pressure on the disposal, may be the 

cause of this outcome. Further work should search for 

ways for this unopposed possession time to be 

accounted for, whether by removing set pressure 

instances or calculating per a set number of disposals. 

 The two ridgeline plots show minimal year-to-

year difference in pressure points per minute of opposition possession, and little difference in this metric between 

winning and losing sides. The between-season similarity may be indicative of ongoing changes in rules and team 

game styles having minimal effect on the way teams apply defensive pressure. Data for these seasons may be 

combined for future research with the assumption that defensive pressure has changed minimally season-to-

season.  

 The included model for calculating expected pressure is the first of its kind. The metric is able to compare 

a team’s pressure performance to what should be expected in a match. A small positive correlation with winning 

was noted. A model of this kind would allow for coaches and analysts to assess their team’s defensive performance 

against a more relevant benchmark than a comparison between the two team’s pressure factors. An expected 

pressure above a team’s true output would be indicative of the team overperforming defensively, and 

underperforming if their true pressure is below expectation.  

 

5. LIMITATIONS  

The nature of this research and its novelty has with it several limitations. Although moments of set play can result 

in differing outcomes, due to players only having a short amount of time to dispose of the ball from a free kick, 

mark or kick-in, the majority of these instances result in ‘set’ pressure. This could skew the data and impact the 

results of differences amongst other pressure levels. Future work should seek to separate set pressure from other 

instances, whether by removing marks, free kicks and kick-ins, or accounting for the time taken between 

possession and disposal.  

Figure 14: The spread of differences between the winning and losing 
team's percentage of pressure points (kicks and handballs) compared to 
expected pressure in a match 

Figure 15: The spread of winning team's percentage of pressure points 
(kicks and handballs) compared to expected pressure in a match 

Figure 16: The spread of losing team's percentage of pressure points 
(kicks and handballs) compared to expected pressure in a match 
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 The inclusion of pressure attained from tackles and other unique moments of play such as ground kicks 

could have drawbacks for calculating pressure points per minute of opposition possession, as many tackles would 

occur without the other team “gaining” possession of the ball. Removing these instances when calculating the 

metric may provide alternative results.  

 As the model was built using data from the 2019 season and tested on the same input, there is no proof 

that this model would remain relevant when applied on other matches. Further work will replicate the same process 

using a larger sample of matches before testing with more recent, unseen contests. The current model is also 

limited to kicks and handballs, with other instances of pressure such as disposal-less tackles and pressure credits 

excluded. Future models should aim to include these moments of pressure to give a true account of a team’s 

defensive performance. Moments of set pressure, such as disposals from marks, kick-ins and 50m penalties need 

to also be accounted as higher pressure levels, though unlikely, are possible. Some disposals also yield an expected 

pressure less than 0.75, which is the lowest possible pressure points attainable. This should be controlled in future 

models. Once these changes are made, the final product will provide a new tool to analyse a team’s defensive 

pressure during and after a game and in the long term. 
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Abstract 
 

Factors that affect shot at goal accuracy in AF have been explored previously, which include shot location, shot 

type and stadium design (Bedford & Schembri 2006). More recently, additional factors were identified such as 

playing position and weather, but not the experience of the player (Anderson et al., 2018). Furthermore, Browne 

et al. (2022) reinforced the importance of shot location and added the effect of pressure on the accuracy of shots 

in open play. The present study explored whether a single variable (arc angle) that represents the shot location, 

provides a more useful predictor of the likelihood of a goal. In addition, we aimed to explore whether it is more 

important to maximise the number of shots at goal, or the probability that shots will result in a goal. 32,694 shots 

at goal were analysed from 1260 team performances in three seasons (2017-2019) of the Australian Football 

League. The most important determinant of match outcome is the number of shots at goal, although there was a 

cohort (~14%) that won, without having more shots at goal. This cohort managed to win by having a higher shot 

at goal accuracy, which was achieved in large part by taking fewer shots at goal, from field locations that had a 

higher probability of scoring a goal. The probability of scoring a goal can be predicted using shot arc angle (61-

65.8% classification accuracy), instead of the combination of shot angle and distance (60%). These results 

demonstrate that there is an interplay between the total number shots per match and the probability that those 

shots will result in a goal. All teams should consider this aspect of their performance as it relates to their match 

strategy and because points scored for and against them, may affect their final position on the league ladder. 

 

Keywords: Technical performance, tactical performance, expected goal 
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Abstract 

AFL football is a physically vigorous sport where opposing players aim to outscore their opponent. Successful 

teams are often tactically and physically superior to their opponents, which makes it important for further 

analysis into how these athletes dynamically move during a game. With that, Sequential Movement Patterns 

can be identified and quantified using a clustering technique to explore how players predominantly move in 

play. Sequential Movement Patterns (SMP) are running metrics extracted from GPS (Global Positioning 

Systems) data to show the way in which players move during play. The advantage of utilising SMP to explore 

common movement patterns, is to associate these to specific player positions and demands. Usually, 

spatiotemporal data is used to identify threshold running zones which at times can be quite a subjective value. 

An alternative approach to this is to use a clustering technique on the collected spatiotemporal data (X, Y 

coordinates) to identify movements that are like each other in nature. This is a novel approach which has not 

yet been explored in the AFL. Therefore, the aim of this study us to identify and explore the differences in 

Sequential Movement Patterns among the distinct positions in the AFL. This can be beneficial for coaches and 

Sport Science staff to identify differing running patterns amongst positions within a team and adjust their 

running demands accordingly in training.   

Keywords: AFL, GPS, Movement Patterns 
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Abstract 
 

The traditional approach to modelling the accuracy of player actions across various sports has been to use a 

binomial (score/miss) outcome conditioned on various inputs related to the context of the action. Here we 

introduce a novel approach to assessing accuracy of set shots at goal in Australian Football, where the player 

can take the shot without intervention from defensive players. With official data from the 2014-2021 seasons 

nearly 35,000 set shots are included in the study, tagged with X,Y coordinates for the location of the shot and a 

seven-option multinomial output (goal, behind left/right, post left/right, out on the full left/right). For each shot, 

the location of the four goal posts is converted to the angular domain as degrees left or right of the centre of the 

goal line, and the angular dispersion is sampled from a uniform distribution in the possible outcome space given 

by the previously mentioned multinomial output. Distributions of angular dispersion are then derived for 

individual players to assess the reliability of their goal-kicking, and to establish expected results from set shots 

at goal as probabilistic outcomes. A further extension was applied to the assessment of decision-making related 

to snapped shots at goal to determine locations on the ground where this may be more accurate than a traditional 

drop-punt. 
 

 

Keywords: Accuracy, Simulation, Australian Football, Expectation 

18



 

Submitted to MATHSPORT 2022 March 30, 2022 

EVALUATION OF AUSTRALIAN FOOTBALL STRATEGIES AS 

ADJUNCT STATES OF A MARKOV GAME MODEL 

 
Darren M. O’Shaughnessy a & Chris McKay 

 
St Kilda Football Club 

a Corresponding author: darren.oshaughnessy@saints.com.au 
 

Abstract 
 

Markov Models are used in game theory to describe the evolution of the play through well-defined memoryless 

states. Scores and results can be encoded as absorbing states of the model, with Markov matrix operations 

enabling evaluation of all states’ transition probabilities and their likelihood to end in a certain score. The on-

field possession states have been modelled in several sports as a Markov or semi-Markov model, starting with 

Romer’s (2002) dynamic programming approach in American Football. 

More complex sports such as Australian Rules football (Meyer, Forbes & Clarke, 2006), ice hockey (Thomas, 

2006) and soccer (Rudd, 2011) have employed these methods, based on notational analysis of events in the 

game. This paper uses (X,Y) event and descriptive data from Champion Data, combined with club-specific 

annotations that describe common scenarios in the game. 

The Markov states in the model correspond to well-described events, such as shots at goal, stoppages, and 

turnovers. Additional state parameters include the position relative to goal, the relative position of the defensive 

team (“the bubble”) and the pressure on the ball carrier. Adjunct states are built, corresponding to coaching 

scenarios such as “slow play coming out of defence”. These are defined using coaches’ descriptions, and they 

do not appear in the Markov matrix per se. Where there are multiple choices from the scenario (e.g. switch the 

play vs kick for distance), each choice is represented as a vector of outcome states, derived empirically. 

When evaluating a game, the actual outcomes from these choices are compared with the historical average, in 

terms of metres gained, percentage turned over, and field equity (O’Shaughnessy, 2006) of the subsequent states. 
 

 

Keywords: Australian Rules Football, Strategic Evaluation, Coaching, Markov Model, Dynamic 

Programming, Markov Decision Process 
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Abstract 

An integral incentive for an athlete in any team sport is the status of their contract. Despite multiple studies 

assessing the relationship of player performance on player value in the team sport notational literature, there is 

limited knowledge on the relationship between a player’s contract status and individual player performance. 

This research analysed the extent to which player performance, defined as Australian Football League (AFL) 

Player Ratings, differs dependent on the status of a player’s contract in the AFL. A measure of ‘expected 

performance’ was modelled allowing for an exploration into the differential with actual performance as a 

function of contract status. The results indicated that players who signed mid-season and were out-of-contract 

at the end of that season showed substantial differences between performance in the matches prior to and post 

signing. Furthermore, athletes who have more consistent performances (lower relative standard deviation) are 

less likely to see a reduction in performance post signing, as compared to more inconsistent performers. The 

findings and applications outlined in this research provide an explanation of the association between player 

performance with respect to the timing of player contract signings and could be used as an example of 

associations worth investigating to identify refined indicators of expected performance for matches post the 

signing of an AFL contract. 
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Abstract 
 
Australians have been bodysurfing for more than 120 years, and the Polynesians even longer.  The early history 
of this sport is considered, followed by the mathematical and physical aspects of catching and riding ocean 
waves that break near the shore. Some comments on the difficulties of fluid dynamical research into bodysurfing 
involving drag, buoyancy, gravity and forward propulsion are considered. Finally, there is an awareness of the 
dangers and fun associated with this sport, which are covered in more detail in my book Bodysurfing, published 
in 2009, the only Australian book on the subject. 
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Abstract 
 

Advancements in machine vision have enabled this technology to become a viable alternative to GPS data for 

tracking player movement (McDonald et. al., 2020; Trowland et. al., 2020).  Fixed camera footage is readily 

available on the internet, including those posted from national governing bodies, such as NZ Cricket 

(www.nzc.nz).  The three-stage approach outlined by McDonald et. al. (2020) is used to convert raw match 

footage into a set of xy coordinates per player per frame. Here, we convert footage of two batters running 

between the wickets in a New Zealand First Class game played late in the 2020-21 season into machine readable 

data for further analysis.   

     We show the running paths of the two batters. In addition, we also show the acceleration and speed of the 

dismissed batter per frame, which can be used to infer timeliness of decision-making.  In this real-world scenario, 

it took 78 Frames for the ball to come in from the field after leaving the bat (3.12 seconds).  This required the 

dismissed batsmen to run at 20.4kph, the equivalent of running 100m in 17.65 seconds.  Further assessment of 

the frame-by-frame data indicates the dismissed batter delayed his decision to run after first making a move to 

run by 9 frames (run out by 7 frames).  In addition, this batter had a curved run, running an extra 15% to his 

running distance.  This technology becomes potent for effective coaching of running between wickets. 

Keywords: Machine Vision, Scouting, Acceleration 
 

1. INTRODUCTION 

Cricket continues to evolve as a game (Noorbhai et. al., (2015). Driven by spectator appeal, increased 

professionalism and athleticism, cricket has adapted to capture and retain both players and fans alike.  Shortened 

formats of the game (T20 and The Hundred) create an approximately three-hour version of the game.  The 

introduction of age and stage to retain junior cricketers also shows a willingness to adapt (Renshaw, 2017).  

Coaching and umpiring aids also continue to embrace emerging technology.   

Shaheen (2021) outlined the technology used within game as part of the Decision Review System (DRS).  

This technology ranges from: Hawk-eye (ball tracking), Hotspot (detecting heat from contact between bat and 

ball), Snicko (profiling sound waves).  These cover the use of ball tracking, imaging, and profiling sound. There 

are other implementations which are of interest. Chowdhury (2016) explored the use of machine vision to detect front 

foot no-balls.  Bracewell et. al. (2020) showed how bowling speeds could be estimated from historical footage.  Pai (2020) 

provided a tutorial for ball tracking using Python which is the extra detail required to implement what Bracewell 

et. al (2020) outlined. 

Moodley et. al. (2022) state that there have been limited studies demonstrating the validation of batting 

techniques in cricket using machine learning. They showed how the batting back lift technique in cricket can be 

automatically recognised in video footage.  Other approaches are outlined for cricket and other sports relating 

to movement and technique. As the cost of computing power decreases, the ability to process this type of footage 

becomes increasingly accessible. For example: Bracewell et. al. (2022) tracked the centre of play in rugby union; 

Bakhai (2020) outlined the use of machine vision in baseball; Faulkner et. al. (2015) investigated player detection 

for use in Australian Rules).  New approaches and use cases will continue to emerge, driven by blogs and 

tutorials like Pai (2020) across multiple sports. 

Here we take a different approach and assess the decision-making process of a batter.  This is achieved by 

showing the running path. Importantly, we also show the change in speed which can be used to infer timeliness 

of decision-making. 

 

2. METHODS 

DATA 

Using accessible footage available online we explore a run out to show how machine vision works within a 

cricket setting (https://www.nzc.nz/domestic/competition-centres/plunket-shield).   Usefully, the footage from 

this site is a single fixed camera per game which makes the process of converting the human detections to a top-

down view via a homographic transformation much simpler.  This process is explained by McDonald et. al., 

(2020).  Given cricket pitches are standardised, approximations of distance are readily obtained.   To complete 

a run, batters move the running crease, also referred to as the non-strikers popping crease and the popping crease, 

which is 17.68m. This is shown in Figure 1. 
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Figure 1: Stylised diagram showing the dimensions of a cricket pitch produced by the Government of Western 

Australia (2019). 

 

 
 

Figure 2:  Accessing publicly available footage to assess Player Movement. 

 

 

From the NZC website, we selected one run out for review.  This is the clip third from left in the bottom 

row of Figure 2. This clip is titled “HR Cooper run out (NF Kelly)” and is from the Otago Volts vs Northern 

Districts Round 8 game of the 2020/21 Plunket Shield (New Zealand domestic first-class cricket). 

From match footage, players are detected in each frame.  Also, key features, such as crease, wickets and 

marking for danger zone are identified to help work out where a player is relative to the pitch.  This aids in the 

homography and conversion to the top-down view. 
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Figure 2: Mosaic showing key moments in HR Cooper’s run out effected by NF Kelly in the Round 8 Plunket 

Shield match played between Otago and Northern Districts in the 2020/21 season. 

 

In the top left, the image shows the point of release for the bowler at frame 132.  The top right image is the 

same frame, but with human detections.  Bottom right-hand image is frame 145 (revealing the ball was travelling 

at 122kph) which shows when the ball was stuck.  The fourth and final image in the bottom left shows frame 

223 which is when the bail first lifts after the wickets have been struck. In this final image, Cooper is short of 

his ground. 

 

 
 

Figure 3. Paths of all detected humans from the clip for HR Cooper’s dismissal 

Frame 132 Frame 132 

Frame 145 Frame 223 
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The player detections from Figure 2 are then converted into a top-down view as shown in Figure 3.  The 

darker dots are the start of the detected human’s movement, and the lighter dots are movements toward the end 

of the clip.  The fielders and bowlers are seen which provides an additional perspective on fielding movement.  

 

3. RESULTS 

Understanding how people move allows insights to be extracted.  It took 78 Frames for the ball to come in from 

the field (frame 223) after leaving the bat (frame 145) (3.12 seconds). This required Cooper to run at 20.4kph, 

the equivalent of running 100m in 17.65 seconds.  For a first-class athlete, this is achievable. 

 

 

 
Figure 4: Running paths of Cooper (Blue dots, non-striker, starts at top of graph and top of image from frame 

145 and Raval (Orange dots, striker, starts at bottom of graph and bottom of image from frame 145) 
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The distance travelled by each batter is calculated as the sum of the Euclidean distance between the x,y, 

coordinates for consecutive frames between frames 145 and 223.  A feature of Cooper’s path, shown as the blue 

dots in Figure 4, is the curve.  The estimated total distance he ran was 20.32 metres, which is 15% more than 

necessary to cover the 17.68m between the popping and running creases.  In further investigations we will 

explore the application of smoothing to remove some of the jitter.   

 

 

 
Figure 5: Speed Index per frame for the first 50 frames for Cooper’s movement from when the ball is struck 

 

Looking at the first two seconds of footage, we see Cooper does not react until after nearly 1 second (about 20 

frames [1]).  We can see the spike after approximately 30 frames [2] where he begins to run and hit top speed 

(after 27 frames), he then stalls and does not commence running again until 36th Frame [3].   Cooper was run out 

by 7 frames.  Between the 27th and 36th frame Cooper “lost” 9 frames through indecision [4](0.36 of a second).  

     The profile in figure is based on the movement between pixels, so we refer to this as a speed index.  The 

important elements to derive from the graph below are the stillness, up to frame 20 and then the relative start-

stop-start movement that is evident from about the 20th frame. 

 

3. DISCUSSION 

The use of machine vision enables new data sources to be captured.  Here, we have been able to assess how 

Northern Districts batter, HR Cooper moved while attempting a single run.  Two features stand out. Firstly, the 

arc of Copper’s running path added an extra 15% of running distance. Cooper delayed his decision to run after 

first making a move to run by 9 frames (run out by 7 frames). 

The impact of those elements becomes important when considering the outcome.   Had he run straight, this 

would have seen him complete the run in 13 fewer frames. This is estimated by assuming a constant speed across 

the 85 frames that it took Cooper to slide his bat across the line (frame 230).  A 15% reduction is relative to 13 

fewer frames (he was run out by 7 frames). 

If Cooper had either run straight or committed early, he would have successfully completed the run 

successfully, despite the direct hit from NF Kelly.   

 

4. CONCLUSION 

Machine vision has increasing applications in cricket.  These applications are beyond decisioning and 

entertainment.  Here, we showed by tracking an individual, we were able to assess different elements of the run: 

namely the directionality of his path and the point at which he made a clear decision to attempt the run.  Both 

features are useful for training and coaching purposes at all levels.  Importantly, this is achieved from a fixed 

camera. This makes this type of approach accessible to coaches of all ages, particularly as Trowland et. al. (2022) 

showed that tracking could be undertaken from an iPhone.  Extending beyond a single case to process many 

“runs” would help further insights into batter behaviour. Of particular interest is the reaction time and how quick 

a batter responds to a call or cue from their batting partner.  Combing this type of processing to include fielding 

expands the capability to interrogate the viability of a run and evaluate the level of risk a batter is willing to 

assume, relative to the match context.  
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Abstract 
 

In Twenty20 cricket, there is a trade-off relationship between batting average and strike rate as well as bowling 

strike rate, economy, and average. This study presents Pareto frontiers as a tool to identify athletes who possess 

an optimal ranking when considering multiple metrics simultaneously. 884 matches of Twenty20 cricket from 

the Indian Premier League were compiled to determine the best batting and bowling performances, both within 

a single innings and across each player’s career. Pareto frontiers identified nine optimal batting innings and six 

batting careers. Pareto frontiers also identified three optimal bowling and five optimal bowling careers. Each 

frontier identified players that were not the highest ranked athlete in any metric when analysed univariately. 

Pareto frontiers can be used when assessing talent across multiple metrics, especially when these metrics may 

be conflicting or uncorrelated. Pareto frontiers can identify athletes that may not have the highest ranking on a 

given metric but have an optimal balance across multiple metrics that are associated with success in a given 

sport.  
 

Keywords: cricket; visualisation; talent identification; optimal selection 
 

1. INTRODUCTION 

The need to identify attributes to quantify optimal performance is evident for every sport (1). With the exception 

of a few single-skill sports (2), most athletes require a number of attributes to perform in their given sport. These 

attributes can encompass physical (3), physiological (4), mental (5), or skill-based characteristics (6), that all 

can contribute to the performance of a player. Attributes such as speed, endurance, agility, strength, power, and 

accuracy are common across multiple sports (6), and each attribute can have multiple variables seeking to 

quantify that attribute. As such, coaches and support staff are consistently looking for new variables that could 

be used to either quantify new attributes of interest or develop more variables to better quantify already-identified 

attributes with the hope that these new variables can identify previously-hidden talent or interrogate subtle 

differences between different athletes. However, with the increase in the number of attributes of interest, the 

likelihood that an athlete excels in every attribute decreases. Consequently, methods are required that can analyse 

multiple attributes simultaneously, rather than viewing each attribute in isolation.  

While traditional research statistical techniques focus around identifying the mean and standard deviation of a 

population (7), sports typically are not interested in the mean during talent identification processes, rather, they 

are looking for outliers. That is, coaches and support staff are looking for athletes that sit the furthest away from 

the mean in the direction that success is defined. Therefore, when multiple attributes are of interest, selection of 

athletes is by choosing athletes that sit the further away from the mean within each attribute. While this process 

can work when variables are positively correlated, this process can miss talent when variables are negatively 

correlated. For instance, at the elite level, there is a negative correlation between maximal sprint speed and 

endurance capacity (8). However, running-based team sports require athletes possess both speed and endurance 

to play at the elite level and, therefore, players necessarily need to trade off between having optimal speed and 

optimal endurance. In its simplicity, if both speed and endurance were equally required for success, selecting 

the top-n sprinters and the top-n endurance runners may not be the optimal athletes for that sport. 

Consequently, both attributes need to be viewed in tandem. The process of optimising the balance of multiple 

attributes is termed ‘multi-objective optimisation’. Mathematically, they aim to create the perfect balance of the 

attributes of interest. If a data point was defined as:  𝑥⃗1 𝜖 𝑋, it is, therefore, better than another data point defined 

by: 𝑥⃗2 𝜖 𝑋 if 𝑓𝑖(𝑥⃗1)  ≤  𝑓𝑖(𝑥⃗2) for all metrics ⅈ 𝜖 {1,2, … , 𝑘} and 𝑓𝑗(𝑥⃗1) < 𝑓𝑗(𝑥⃗2) for at least one metric 

𝑗 𝜖 {1,2, … , 𝑘}. Once these conditions have been met, the remaining points are deemed Pareto-optimal and form 

what is called the Pareto frontier. 

In Twenty20 cricket, there are multiple facets within both batting and bowling that can define success. Unlike 

Test cricket and, to an extent, One-Day cricket where scoring as many runs as possible regardless of how many 
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deliveries faced is of most importance, Twenty20 crickets requires batters to score faster (i.e., higher strike rate) 

and for bowlers to concede minimal runs which, in some cases, can come at the expense of preserving their 

wicket. Therefore, there is a trade-off relationship between batting average and strike rate as well as bowling 

economy, average, and strike rate within Twenty20 cricket. For example, early on in an innings the risk-return 

of attempting to hit six runs off a ball is significantly different than in the final over of an innings. Similarly, a 

bowler needs to balance taking wickets while also conceding as few runs as possible. For instance, when bowling 

four overs, it is again difficult to determine whether taking three wickets for 50 runs is of more worth than taking 

no wickets but only conceding eight runs as the three wickets may not have been worth conceding 50 runs. As 

both attributes within each domain are of interest, Pareto frontiers can be used to determine batters and bowlers 

that may not record the highest in either variable but display an optimal balance of the two attributes. Therefore, 

when assessing the quality of players, it is necessary to utilise tools that can analyse these datasets without 

favouring one metric over another. Therefore, the present study aimed to use Pareto frontiers to identify the best 

performing Twenty20 batters and bowlers. 

 

2. METHODS 

The present study comprised all 884 matches of the first 14 editions of the men’s Indian Premier League (IPL), 

India’s domestic T20 cricket competition. The dataset contained 566 batters and 467 bowlers.  Collectively, 

there were 13,357 individual batting innings with observations ranging from 1-208 innings per batter, while 

there were 10,925 individual bowling innings with observations ranging from 1-180 innings per bowler.  

To summarise the data, two summary statistics were generated for batting and three summary statistics were 

generated for bowling. The summary statistics were as follows: 

• Batting Average: runs scored divided by frequency of dismissal 

• Batting Strike Rate: runs scored divided by balls faced 

• Bowling Average: wickets taken divided by runs conceded 

• Bowling Strike Rate: wickets taken divided by balls bowled 

• Bowling Economy: runs conceded divided by overs (i.e., 6 balls) bowled 

 

To understand both the batting and bowling attributes within cricket, four Pareto frontiers for were established 

within the dataset: 

 

i. Pareto-optimal Batting Innings 

This analysis outlined the highest runs scored within an innings at the highest strike rate. 

 

ii. Pareto-optimal Batting Career 

This analysis outlined the highest batting average across a career at the highest strike rate. To provide 

a more accurate career report, batters required to have played a minimum of 20 innings which left 163 

eligible batters. 

 

iii. Pareto-optimal Bowling Innings 

This analysis outlined the most wickets taken in an innings at the lowest economy. 

 

iv. Pareto-optimal Bowling Career 

This analysis outlined the lowest bowling average across a career at the lowest economy and lowest 

strike rate. To provide a more accurate career report, bowlers required to have bowled in more than 20 

matches, which left 145 eligible bowlers. 

 

The rPref package (9) was used in R v 4.1.0 (10) to determine the Pareto frontiers using the psel function with 

the ‘top_level’ argument set to 999 to ensure every athlete was assigned to a frontier.  
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3. RESULTS 

Pareto-optimal Batting Innings 

Nine Pareto-optimal innings were identified with extremities ranging from 6 runs off 1 ball (i.e., strike rate = 

600) to 175 off 66 balls (i.e., strike rate = 265.15). Additionally, the solution of 6 runs off 1 ball has been attained 

eight times. The IPL batting innings Pareto frontier is displayed in Figure 1 and the batters are listed in Table 1. 

 

Figure 1. Pareto-optimal batting within an IPL innings. N.B. For illustrative purposes, points were filtered out i 

if both their runs scored was below 50 and their strike rate was below 100. 

Table 1.  List of all Pareto-optimal IPL batting innings 

Batter R (B) Strike Rate Match 

Chris Gayle 175 (66) 265.15 IPL06 Match 31 

David Miller 101 (38) 265.78 IPL06 Match 51 

Yusuf Pathan 100 (37) 270.27 IPL03 Match 2 

Suresh Raina 87 (25) 348.00 IPL07 Match 59 

Andre Russell 48 (13) 369.23 IPL12 Match 17 

AB de Villiers 41 (11) 372.72 IPL08 Match 16 

Chris Morris 38 (9) 422.22 IPL10 Match 9 

Krunal Pandya 20 (4) 500.00 IPL13 Match 17 

Numerous 6 (1) 600.00 IPL04 Match 74 1st occurrence 
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Pareto-optimal Batting Career 

Six Pareto-optimal batting careers innings were identified. Andre Russell recorded the highest career batting 

strike rate with 178.57 runs per 100 balls, while KL Rahul recorded the highest batting average with 47.43 runs 

per dismissal. The IPL batting career Pareto frontier is displayed in Figure 2 and the batters are listed in Table 

2. 

 

Figure 2. Pareto-optimal batting within across an IPL career. N.B. For illustrative purposes, points were filtered 

out if both their average was below 20 and their strike rate was below 100. 

 

 

  

Table 2.  List of all Pareto-optimal IPL batting careers 

Batter Innings Average Strike Rate 

KL Rahul 85 47.43 136.38 

David Warner 150 41.60 139.97 

Jonny Bairstow 28 41.52 142.19 

Chris Gayle 141 39.72 148.96 

AB de Villiers 170 39.71 151.69 

Andre Russell 70 29.31 178.57 
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Pareto-optimal Bowling Innings 

Three Pareto-optimal bowling innings were identified: 2/0 by Suresh Raina, 5/5 by Anil Kumble, and 6/12 

achieved by Alzarri Joseph. The IPL bowling innings Pareto frontier is displayed in Figure 3 and the bowlers 

are listed in Table 3. 

 

Figure 3. Pareto-optimal bowling within an IPL innings.  

Table 3.  List of all Pareto-optimal IPL bowling innings 

Batsman Overs Wickets Runs Match 

Suresh Raina 0.3 2 0 IPL04 Match 52 

Anil Kumble 3.1 5 5 IPL02 Match 2 

Alzarri Joseph 3.4 6 12 IPL12 Match 19 
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Pareto-optimal Bowling Career 

Five Pareto-optimal bowling careers were identified, with Doug Bollinger achieving the lowest average, Rashid 

Khan achieving the lowest economy, while Kagiso Rabada recorded the lowest strike rate. The IPL bowling 

career Pareto frontier is displayed in Figure 4 and the bowlers are listed in Table 4. 

 

 

 

Figure 4. Pareto-optimal bowling across an IPL career.  

 

  

Table 4.  List of all Pareto-optimal IPL bowling careers 

Batsman Innings Average Economy Strike Rate 

Doug Bollinger 27 18.73 7.22 15.57 

Kagiso Rabada 59 19.71 8.22 14.39 

Lasith Malinga 122 19.79 7.14 16.63 

Jofra Archer 35 21.33 7.13 17.93 

Rashid Khan 86 21.46 6.40 20.12 
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4. DISCUSSION 

This study sought to use Pareto frontiers to visualise optimal Twenty20 cricket batting and bowling 

performances, both within an innings as well as across a career. By analysing performance multivariately, rather 

than simply analysing multiple variables univariately, players can be deemed optimal despite not being 

objectively highest in a single variable. When conflicting attributes are of equal interest, Pareto frontiers can 

view these variables in tandem as the expectations of an individual to attain the highest level in both attributes 

univariately may be unfeasible. All four Pareto frontiers contained at least one athlete that was not the highest 

ranked athlete in any metric when analysed univariately, and yet was deemed Pareto-optimal due to their balance 

in the metrics of interest.  

The main advantage of Pareto frontiers highlighted in the present study is identifying athletes who are optimal 

across multiple metrics even when they are not the highest ranked in any metric. This was most evident where 

Chris Gayle, when viewed univariately, has the 9th-highest career batting average (39.72), which is 6.71 runs 

per innings lower than the highest (Figure 2). Similarly, he has the 14th-highest strike rate, striking at 148.96 

which is 29.61 runs per 100 balls lower than the highest. However, when considering both metrics 

simultaneously and visualising these metrics, he is one of the best batsmen across the 14 seasons of the IPL. 

The present study also illustrated how Pareto frontiers can be used to visualise talent in more than 2 dimensions. 

For example, while Jofra Archer has the sixth-lowest bowling average, 14th-lowest economy, and the 19th-

lowest strike rate (see Figure 4), he can be deemed a Pareto-optimal bowler as there are no other bowlers who 

supersede him across all three metrics. While there will be some correlations between the three bowling metrics 

(i.e., average, economy, and strike rate) as the metrics are related (e.g., wickets taken is the denominator of 

average and numerator of strike rate), visualising the third dimension is still necessary as the reader would still 

need to multiply the x and y values to understand where they would sit in the third dimension.  

In the present study we chose to observe batting and bowling as purely independent roles within cricket; 

however, there are also avenues for Pareto frontiers to be established for all-rounders within cricket (i.e., players 

that are picked for both their batting and bowling ability). However, it should be noted that if an all-rounder 

Pareto frontier were to be established with both batting average and strike rate as well as bowling average, 

economy, and strike rate, the resulting five-dimensional outputs, while valid and executable, become 

increasingly difficult to interpret and visualise. To do such an analysis, a factor-reduction technique such as 

principal components analysis should be considered and the Pareto frontier could be built from the extracted 

components (e.g., batting and bowling). 

While the present study is designed to be an introduction for sports scientists to the concept of Pareto frontiers, 

it should also be considered that there is some level of uncertainty surrounding each observation in the career 

Pareto frontiers due to the differing number of observations. For example, Jonny Bairstow is deemed Pareto-

optimal as he is currently striking at 142.19 at an average of 41.52 after 28 innings; however, it is right to assume 

that it is more uncertain that he lies on the frontier than AB de Villiers who has 170 observations. Therefore, 

future research could consider providing confidence or credible intervals around the probability that an 

individual lies on the Pareto frontier. Consequently, it is then feasible that a probability that an individual sits on 

the first, second, or third frontier could be calculated. 

While the present study used Twenty20 cricket to illustrate the power and usefulness of Pareto frontiers, the 

concept can be widely applied within sports science datasets, especially when the variables of interest are 

uncorrelated or negatively correlated. Pareto frontiers can still be established between two positively correlated 

metrics; however, it is likely that there will be less ‘hidden’ athletes on this frontier as naturally the athletes who 

are high in one metric will be high in the other metric. Future research should apply Pareto frontiers across 

different avenues within sports performance analysis which have multi-faceted determinants as there are many 

other possibilities within sports whereby Pareto frontiers can reveal athletes who possess the optimal balance of 

the metrics of interest. 

 

5. CONCLUSIONS 

With the proliferation of various physiological, mechanical, and skill-related attributes associated with 

performance, Pareto frontiers should be used within sports science to visualise multiple performance metrics. 

By analysing opposing data in tandem, more feasible expectations and benchmarks can be established to reveal 

talent that may have been missed when analysing multiple metrics univariately. 
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Abstract 
 
The ‘nervous nineties’ is a famous colloquialism in cricket that conveys the mental challenge of batting within 
reach of 100 runs. The name itself (and its public usage) implies that batting in the nineties is more challenging 
than say batting in the eighties or once past 100, presumably due to internal pressure associated with the 
possibility of reaching (or failing to reach) the illustrious milestone. If it is true that the nineties are an 
especially difficult passage of an innings, historical data should show a change in the probability of dismissal, 
run rate or risk-taking at this time. Yet, despite the notoriety of this batting moment, our inspection of the 
relevant literature suggests that there are no formal attempts to verify the existence of the nervous nineties 
(either mathematically or phenomenologically). In fact, to our knowledge, only one peer-reviewed publication 
has explored the issue of batting performance near the century but did so with an interest in team 
organisational behaviour and focused on the arguably less prestigious one-day international game. To close the 
gap, we examined a combination of player-level, innings level and ball-by-ball level data using all available 
international test matches since 2004 – then modelled the regression discontinuity of performance indicators 
that might reflect nervousness around the 100 landmark. Preliminary analysis indicated no significant change 
in the probability of dismissal during the nineties but did suggest a tendency among batters to increase their 
run rate and score more boundaries. A separate multilevel logistic regression, used to specifically examine the 
predictors of getting out in the nineties, primarily revealed vulnerabilities in less skilled batters. Our analysis 
suggests that if players are nervous in the nineties, many have developed coping strategies to survive the 
period, possibly including playing more aggressively to rapidly get into three figures.  
 
 
Keywords: cricket, batting, performance anxiety, the nervous nineties 
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Abstract 
 

Mahjong is a class of imperfect information games typically played with four players using a set of mahjong 

tiles. Players compete to form winning hands which are worth a certain number of points. It is a zero-sum game, 

where the winner obtains points from another player or players according to the game situation. Unlike bridge, 

there are no teams. The game originated in China and contrary to popular belief is relatively modern, with its 

origins dating from around 1880. The game was exported overseas and was extremely popular in America in the 

1920s. There are many variants both internationally and within different provinces of China: Hong Kong, 

Sichuan, Shanghai, Taiwanese, Riichi (Japanese) are just a few examples. 

 

In most forms of mahjong a standard winning hand consists of 14 tiles (17 in Taiwanese), and these 14 tiles 

consist of four sets of three (five sets of three in Taiwanese) and one pair. A pair is two identical tiles, whereas 

as set of three is either three identical tiles or a run of the same suit such as 1-2-3 or 7-8-9. A ready hand is a 13-

tile hand which is one tile away from winning. This document for the first time lists every possible type of ready 

hand and every possible winning tile for each hand. This was achieved via brute-force, firstly by enumerating 

every case, and then using an axiomatic approach to define when two cases are of the same type. Previous 

combinatorial results on ready hands can now be derived by simply examining the table. 
 

Keywords: Combinatorics, mahjong, mind games, ready hands 

 
 

1. INTRODUCTION 

A ready hand, or waiting hand, is a hand in mahjong that is one tile away from winning. The tables below give 

a wait pattern classification system for mahjong, covering all possible cases. There are 828 wait patterns, 

identified by integers from #1 to #828, although in the vast majority (99.67% in Riichi mahjong) of cases the 

wait classification will be a number between #1 and #60.  

 

There are many mahjong variants (Lo, A., 2001); the system here corresponds to the regular hands in most 14-

tile mahjong variants, where a regular hand is one that is completed by four sets and one pair. For consistency 

the terminology we use here comes from Riichi mahjong (Chiba, D., 2016, Miller, S. D., 2015). Our tables also 

provide another way of confirming previous combinatorial results in the literature such as Cheng, Y. et al. 

(2017).  For recent research in mahjong AI, see Li, J. et al. (2020). 

 

The wait classifications were derived by using a computer to generate all possible patterns and successively 

removing those that reduced to a simpler form. The most important thing for any wait classification system is 

mathematical consistency, but there is no one correct method, since different axiomatic choices on what patterns 

belong to the same wait category will lead to different outcomes. In order to avoid having too many categories, 

we categorize edge cases (where a theoretical zero-tile or ten-tile would complete the hand) according to the 

base form, so a wait such as 12345 is classified as #10 (Sanmenchan). One slight ambiguity is that in very rare 

cases a tile pattern will simplify to two different existing categories of wait. We use the obvious solution and 

allocate to the simplest category available.  

 

The first table also gives the percentage frequency in Riichi mahjong of each wait classification. These are 

derived from classifying all games played in 2018 in the Houou room of Tenhou. Tenhou is the primary website 

for online Riichi mahjong, and the Houou room is for the top-level players. The algorithm used to derive the 

wait classification for each hand is given in the next section. There were 209,720 games played with 1,735,985 

agaris (hands that did not end in a draw).  

 

The E in the required tiles represents the East tile: in this case it is assumed that the tile pattern also contains a 

pair of East tiles. In general, it can be any pair unrelated to the main pattern. Double pattern waits can also occur, 

where the second pattern is not a simple pair but is of the form 22234 or 23334. For double pattern waits we 

take the computationally convenient approach of classifying the wait according to the pattern that is completed 
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by the winning tile, for example a Double Entotsu wait, where the hand contains the pattern 22234 in two 

different suits, is always classified as Entotsu (#11).  

 

Patterns are ordered by number of tiles in the wait pattern, then by number of winning tiles (N-way), then by 

number of outs. If all of these are the same, they are listed by numerical order of the wait pattern. If a pattern 

that begins with the 2 tile and ends with the 9 tile can by completed the “10 tile”, then the example case is given 

as starting at 1 and ending in 8. This maximizes the number of practical winning tiles and keeps the ordering 

consistent. Reversed patterns are not listed. 

 

2. METHODS 

The algorithm to identify the wait pattern of a ready hand uses a look-up table that contains every non-separable 

mahjong wait pattern and its corresponding wait category. A non-separable pattern is one that does not contain 

any gaps of two or more tiles, since if there exists a gap of this size the pattern can be split into separate pieces. 

For example, 3335777 is a non-separable pattern but 1234789 is a separable pattern (which separates into 1234 

and 789). There are 19,273 non-separable patterns so the table has 19,273 rows and two columns: the pattern 

and the wait category. The table contains reversed patterns to ensure that only one look-up is needed. The look-

up table means that we only need to construct an algorithm to extract the relevant non-separable pattern from 

the waiting hand, which is far simpler than directly calculating the wait category. The construction of the look-

up table was via brute force enumeration.  

 

The basic method is that we first cover non-regular hands (this may vary based on the variant; here we use Riichi 

mahjong), then a winning honour tile, then a winning suit tile. If the winning honour tile forms a pair, we have 

#1 (Tanki), if not we search for the relevant non-separable pattern in the rest of hand; if it exists then we look 

up the wait in the table, if not then the wait is #3 (Shanpon). For a winning suit tile, we identify the non-separable 

pattern closest to the winning tile. If it is anything 

other than a simple pair we look up the wait in the table, otherwise we search for the relevant non-separable 

pattern in the rest of hand, looking it up if it exists, or returning #3 (Shanpon) if it does not. 

 

There are two concepts to define first: 

Split: This subroutine separates a set of tiles into its non-separable pieces. There will either be a single piece (no 

separation), two pieces or three pieces. For example, 111456999 separates into three pieces 111 456 999 as there 

are two gaps of two tiles. 

EqualToZ: This subroutine tests whether the number of tiles in a set is equal to any of 2, 5, 8 or 11. This is 

important for identifying relevant patterns. At the points where we test if any of the suits/pieces are EqualToZ, 

there are only two possible outcomes: none are EqualToZ, or exactly one is EqualToZ. 

 

The Algorithm 

1. Check for kokushi (a non-regular hand type). If so, Return #0. 

2. Check for chiitoi (a non-regular hand type). If so, Return #1 (Tanki). 

3. If winning tile is an honour tile and forms a pair, Return #1 (Tanki). 

4. If winning tile is an honour tile and forms a pung, then test if any suits are EqualToZ. If there are none, Return 

#3 (Shanpon). If there is one, apply Split to this suit and retain only the piece that is EqualToZ. Look-up this 

piece and Return result. 

5. If winning tile is a suit tile, apply Split to the suit and determine the piece closest to the winning tile. If this 

piece is NOT a pair, look-up this piece and Return result. Otherwise, go to next step. 

6. Determine if any of the other two suits or if any of the other piece(s) of this suit (if any exist) are EqualToZ. 

If there are none, Return #3 (Shanpon). If there is one and it is another piece of the same suit, look-up this piece 

and Return result. If there is one and it is one of the other suits, apply Split to this suit and retain only 

the piece that is EqualToZ. Look-up this piece and Return result. 

 

 

 

3. RESULT TABLES 

 

Each table gives the wait pattern, the tile(s) required to win, and the number of outs, which is defined as the 

number of tiles that are available to win, considering that there are four identical tiles of each type (i.e., the 

number of required tiles multiplied by four, subtracting any that are already in the hand). 
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BASIC TABLE 

 

  Tiles   Require   Outs   %  
1 2 2 3 5.73 
2 23 14 8 43.7 
3 22  E2  4 13.17 
4 24 3 4 14.15 
5 2223 134 11 1.08 
6 2224 34 7 0.6 
7 2234 25 6 2.11 
8 2345 25 6 1.56 
9 2334 3 2 0.07 

10 23456 147 11 4.68 
11 22234  E25  7 0.93 
12 22334 14 7 3.52 
13 23345 14 7 4.48 
14 23334  E3  3 0.13 
15 22344 3 3 0.68 
16 2223456 13467 17 0.142 
17 2223444 12345 13 0.011 
18 2333456 1247 14 0.128 
19 2223345 1346 13 0.074 
20 2233334 1245 13 0.007 
21 2333345 1245 13 0.011 
22 2223334 2345 9 0.016 
23 2223344 2345 9 0.041 
24 2224666 345 11 0.004 
25 2224456 347 10 0.046 
26 2224567 347 10 0.082 
27 2222334 134 9 0.008 
28 2222344 134 9 0.004 
29 2223445 346 9 0.068 
30 2234567 258 9 0.327 
31 2344456 147 9 0.046 
32 2344567 147 9 0.29 
33 2345678 258 9 0.231 
34 2233344 234 5 0.012 
35 2223457 67 7 0.037 
36 2233445 25 5 0.083 
37 2234456 25 5 0.133 
38 2333445 36 5 0.024 
39 2334456 36 5 0.078 
40 2223455 25 3 0.01 
41 22234567  E258  10 0.063 
42 12345678 369 10 0.237 
43 22334456 147 10 0.098 
44 23344556 147 10 0.041 
45 23344567 258 10 0.21 
46 23444456  E17  10 0.002 
47 23445678 369 10 0.251 
48 22233344  E14  8 0.006 
49 22233445  E25  6 0.02 
50 22234456  E25  6 0.038 
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51 22334455  E25  6 0.026 
52 22234555  E25  4 0.003 
53 22223344  E5  6 0.002 
54 22333445 14 6 0.017 
55 22334445 36 6 0.018 
56 23333445  E6  6 0.002 
57 23334445 25 6 0.006 
58 23344456 25 6 0.046 
59 23445567 36 6 0.079 
60 22333344  E  2 0.000 

 

Table 1: Basic sixty wait patterns with percentage frequencies. 

 

 

TEN/ELEVEN TILE WAITS 

 

  Tiles   Require   Outs  
61 2223456777 12345678 22 
62 1112345678 235689 19 
63 2223456678 134679 19 
64 2333344567 124578 19 
65 2344445678 235689 19 
66 2223444456 123567 18 
67 2223444567 123458 16 
68 2223334567 234578 15 
69 2224566667 34578 17 
70 1234445678 35689 16 
71 2223345678 13469 16 
72 2233334567 12458 16 
73 2333345567 12458 16 
74 2333345678 12458 16 
75 2344555678 13469 16 
76 2222334456 13467 15 
77 2223344556 13467 15 
78 2223445566 13467 15 
79 2223455667 13467 15 
80 2233334456 12457 15 
81 2333344456 12457 15 
82 2333344556 12457 15 
83 2344445567 23568 15 
84 2223344445 12356 14 
85 2223334455 13456 13 
86 2224445566 34567 13 
87 2223344567 23458 12 
88 2223456667 25678 12 
89 2233444567 12347 12 
90 2223334456 23457 11 
91 2223344456 23457 11 
92 2233344456 23467 11 
93 2223334445 23456 10 
94 2223334555 23456 10 
95 2223445666 23456 10 
96 2222345666 1457 14 

97 2223333456 1467 14 
98 2224567999 3478 14 
99 2333344445 1256 14 

100 1222345678 1369 13 
101 2222344666 1345 13 
102 1113345678 2369 13 
103 1113456678 2369 13 
104 1113456789 2369 13 
105 2233445556 1467 13 
106 2333455667 1247 13 
107 2333456678 1247 13 
108 2222344456 1347 12 
109 2222344567 1347 12 
110 2223345567 1346 12 
111 2223445678 3469 12 
112 2233444456 1237 12 
113 2234444567 2358 12 
114 2333444456 1237 12 
115 2334444567 2358 12 
116 2222333445 1346 11 
117 2222334445 1346 11 
118 2223444556 3467 11 
119 2223445567 3467 11 
120 2223456677 5678 11 
121 2233344445 1236 11 
122 2222333444 1345 10 
123 2223333444 1245 10 
124 2223333445 2456 10 
125 2223345666 1346 10 
126 2223444455 2356 10 
127 2223466678 2569 10 
128 2344455567 1458 10 
129 2344466678 1469 10 
130 2223344455 3456 9 
131 2233445566 2356 8 
132 2223344555 2345 6 
133 2223457999 678 11 
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134 2222333344 145 10 
135 2222333345 145 10 
136 2222334444 135 10 
137 2222344445 356 10 
138 1112346678 569 10 
139 1112346789 569 10 
140 2223456778 679 9 
141 2224455667 347 9 
142 2224456678 347 9 
143 2224556677 347 9 
144 2224566778 347 9 
145 2233344566 145 9 
146 1123456789 147 8 
147 1233345678 369 8 
148 1233456678 369 8 
149 1233456789 369 8 
150 1234456789 147 8 
151 2223455677 467 8 
152 2233334455 256 8 
153 2233445567 258 8 
154 2233445677 147 8 
155 2233445678 258 8 
156 2234455667 258 8 
157 2234566778 258 8 
158 2234567789 258 8 
159 2333445678 369 8 
160 2334445567 147 8 
161 2334455567 258 8 
162 2334455678 258 8 
163 2334456678 369 8 
164 2334456789 369 8 
165 2344456678 147 8 
166 2344556678 258 8 
167 2344566789 369 8 
168 2223455777 256 7 
169 2233334445 246 7 
170 2223333455 245 6 
171 2223444566 456 6 
172 2223455567 258 6 
173 2223455678 258 6 
174 2223456788 258 6 
175 2223467778 257 6 
176 2223467888 258 6 
177 2333455567 358 6 
178 2333466678 369 6 
179 2224444666 35 8 
180 2334444556 17 8 
181 1112345679 89 7 
182 2224444567 37 7 
183 2233344457 67 7 
184 2234555567 28 6 
185 2345555678 28 6 
186 2233444556 25 4 
187 2233444566 36 4 

188 2333444556 36 4 
189 2333445567 36 4 
190 2334455667 36 4 
191 2223445556 25 2 
192 2333445556 35 2 
193 2333456667 36 2 
194 2333467778 37 2 
195 2222334455 5 2 
196 2234455556 2 2 
197 22233344456  E147  11 
198 22333444567  E258  11 
199 11123456789  E147  9 
200 22233445567  E258  9 
201 22234455667  E258  9 
202 22234556677  E258  9 
203 22234566778  E258  9 
204 22234567789  E258  9 
205 22334455567  E258  9 
206 22234567888  E258  7 
207 11223345678 369 9 
208 12233445678 369 9 
209 12233456789 147 9 
210 12333345678  E69  9 
211 12334455678 369 9 
212 22223344567  E58  9 
213 22333444556 147 9 
214 22334445566 147 9 
215 22334445678 369 9 
216 22334455667 147 9 
217 22334456678 147 9 
218 23333445678  E69  9 
219 23334445556 147 9 
220 23334445567 258 9 
221 23344455667 258 9 
222 23344455678 369 9 
223 23344555567  E28  9 
224 23344556678 147 9 
225 23344566778 258 9 
226 23344567789 258 9 
227 23444456678  E17  9 
228 23444556678 369 9 
229 12334567789 258 9 
230 22233334445  E14  7 
231 22234555567  E28  7 
232 22333344445  E25  7 
233 22333444456  E25  7 
234 22233344455  E25  5 
235 22233444556  E25  5 
236 22234445566  E25  5 
237 22334445556  E25  5 
238 22223334445  E5  5 
239 22223344456  E5  5 
240 22333344455 14 5 
241 22334444556 36 5 
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242 22334445567 36 5 
243 23333444556  E6  5 
244 23333445567  E6  5 
245 23334444556 25 5 

246 23344455567 36 5 
247 22223344555  E5  3 
248 22234455556  E2  3 

 

Table 2: Ten/eleven tile wait patterns. 

 

 

FOURTEEN TILE WAITS 

 

  Tiles   Require   Outs  
249 1112345678999 123456789 23 
250 1112345666678 12345789 23 
251 2223456677778 12345689 23 
252 2223334567888 23456789 19 
253 2223344556777 12345678 19 
254 2333345677778 1245689 23 
255 2344445666678 1235789 23 
256 1112333345678 1245689 20 
257 2223444456678 1235679 20 
258 2222334456777 1345678 19 
259 2223333456777 1245678 19 
260 2223444455667 1235678 19 
261 2223444456777 1235678 19 
262 2223456667788 1346789 19 
263 2233444566667 1234578 19 
264 1112345666789 1234567 17 
265 1112223456789 1234679 17 
266 1112223456678 1234679 17 
267 2223444556677 1234578 17 
268 1122233345678 1235689 17 
269 2344455566678 1245689 17 
270 2223334445678 2345689 16 
271 2223334445666 1234567 15 
272 2223344556677 2345678 15 
273 2223455566677 1234567 15 
274 2333344445678 125689 20 
275 1113455556789 234679 19 
276 2222344566667 134578 19 
277 1113455556678 234679 19 
278 2333344555567 124678 19 
279 1222233456789 134679 17 
280 1111223345678 235689 17 
281 1112233445678 235689 17 
282 1112334455678 235689 17 
283 1112344556678 235689 17 
284 1112345566778 235689 17 
285 1112345667788 235689 17 
286 1112345677889 235689 17 
287 1222233456678 134679 17 
288 1223344445678 235689 17 
289 1233334555678 124569 17 
290 1233334567789 124578 17 
291 1233444455678 235689 17 

292 2222334456678 134679 17 
293 2223344445678 123569 17 
294 2223344556678 134679 17 
295 2223445566678 134679 17 
296 2223455666778 134679 17 
297 2233334455667 124578 17 
298 2233445566667 124578 17 
299 2233445666678 124578 17 
300 2333344455667 124578 17 
301 2333344555667 124578 17 
302 2333344555678 124569 17 
303 2333344556678 124578 17 
304 2333344566778 124578 17 
305 2334455556678 134679 17 
306 2334455666678 124578 17 
307 2334456777789 235689 17 
308 2344455556678 134679 17 
309 2223334444567 123578 16 
310 2223334455678 134569 16 
311 2223344445567 123568 16 
312 2223444455678 235689 16 
313 1112344567888 134679 16 
314 1113334455678 234569 16 
315 1113456667788 236789 16 
316 2233444555678 123469 16 
317 2223333445567 245678 15 
318 2223334455567 134568 15 
319 2223334555567 234678 15 
320 2223444566778 123458 15 
321 2223444567789 123458 15 
322 2223445566667 234578 15 
323 2224445566678 345679 15 
324 2233344455556 123467 15 
325 2233444555567 123467 15 
326 1112345556789 145679 14 
327 2223334445556 134567 14 
328 1112223345678 123469 14 
329 2223344455567 345678 14 
330 1112233345678 123469 14 
331 1112345556678 145679 14 
332 2224445556667 345678 14 
333 2344455666789 134569 14 
334 2223334455667 234578 13 
335 2223334555678 234569 13 
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336 2223334556677 234578 13 
337 2223334566778 234578 13 
338 2223344455667 234578 13 
339 2223444567888 123458 13 
340 2223445678999 234569 13 
341 2233344456678 234679 13 
342 2233445556667 235678 13 
343 2333444555678 123458 13 
344 2223334445567 234568 12 
345 2223334456777 123457 12 
346 2223334445566 234567 11 
347 1111234567888 34679 16 
348 1112222345678 35689 16 
349 1112345555678 23689 16 
350 1113456788889 23679 16 
351 2222333344567 14578 16 
352 2222344445678 35689 16 
353 2222344567999 13478 16 
354 2222345566667 14578 16 
355 2222345666678 14578 16 
356 2223333456678 14679 16 
357 1113345555678 23469 16 
358 2333344445567 12568 16 
359 2344445555678 23689 16 
360 1122334445678 35689 15 
361 1223345556789 14679 15 
362 2222344445566 13567 15 
363 2222344445666 13567 15 
364 2222344456666 13457 15 
365 2223333444456 12567 15 
366 2223345566778 13469 15 
367 2223345667788 13469 15 
368 2223345677889 13469 15 
369 2223444455556 12367 15 
370 2223445567999 34678 15 
371 2233334556677 12458 15 
372 2233334566778 12458 15 
373 2233334567789 12458 15 
374 2233444455556 12367 15 
375 2233445556678 14679 15 
376 2233445677778 25689 15 
377 2333344455556 12467 15 
378 2333345566778 12458 15 
379 2333345567789 12458 15 
380 2333345677889 12458 15 
381 1223345556678 14679 15 
382 1233455556789 34679 14 
383 1234455556789 13467 14 
384 1112345567789 23568 14 
385 1122223345678 13469 14 
386 1122334555678 13469 14 
387 1222233345678 13469 14 
388 1222233445678 13469 14 
389 1223344555678 13469 14 

390 1223345666789 12457 14 
391 1233334445678 45689 14 
392 1233334456789 12457 14 
393 1233344445678 23569 14 
394 1233444456678 23569 14 
395 1233444456789 23569 14 
396 1233445555678 13469 14 
397 2222333445678 13469 14 
398 2222334445678 13469 14 
399 1112333445678 23569 14 
400 1112334456678 23569 14 
401 1112334456789 23569 14 
402 2233334456678 12457 14 
403 2233344445678 12369 14 
404 2333344455678 14569 14 
405 2333344456678 12457 14 
406 2333445555678 13469 14 
407 2334445555678 13469 14 
408 2344445556678 15679 14 
409 2344445566678 15679 14 
410 2344445567789 23568 14 
411 2222333444556 13467 13 
412 2222333444567 13458 13 
413 2222334445566 13467 13 
414 2222334445567 13467 13 
415 2222334455667 13467 13 
416 2223333444567 12458 13 
417 2223333445678 24569 13 
418 2223334455566 14567 13 
419 2223344455566 13467 13 
420 2223344555667 13467 13 
421 2223345678999 13469 13 
422 2223444555567 12348 13 
423 2223444556678 34679 13 
424 2223445556667 13467 13 
425 2223445566778 34679 13 
426 2223445666678 23459 13 
427 1112344555678 13469 13 
428 2223455677778 25689 13 
429 2223456666778 25789 13 
430 1112345566678 45679 13 
431 2223456777788 25689 13 
432 1112346667788 56789 13 
433 2233334445566 12457 13 
434 2233344445567 12367 13 
435 2233344456667 25678 13 
436 2333344455567 14568 13 
437 2333444455567 13578 13 
438 2333444555567 12348 13 
439 2222345666777 14567 12 
440 2223344455678 34569 12 
441 2223444455567 23568 12 
442 2223445566677 35678 12 
443 2223455566667 24578 12 
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444 2223455666677 24578 12 
445 2223455666678 24578 12 
446 2223456667778 56789 12 
447 1112333456789 12347 11 
448 1234445666789 34567 11 
449 1112233456789 12347 11 
450 1112345678889 14789 11 
451 1122333456678 12369 11 
452 1122333456789 12369 11 
453 1234445566789 14567 11 
454 2222334445666 13456 11 
455 2223333444555 12456 11 
456 2223333444556 24567 11 
457 2223334444556 23567 11 
458 2223334455556 23467 11 
459 2223344445566 23567 11 
460 2223344445666 12356 11 
461 2223344556667 25678 11 
462 2223344566778 23458 11 
463 2223344567789 23458 11 
464 2223444455566 23567 11 
465 2233444556677 12347 11 
466 2233444566778 12347 11 
467 2233445566678 23569 11 
468 2223334455666 13456 10 
469 2223334456678 23457 10 
470 2223344456678 23457 10 
471 2223344555777 23456 10 
472 2223344555678 23458 9 
473 2223344567888 23458 9 
474 2233344455667 23467 9 
475 2223344456777 23457 8 
476 2223334555666 23456 7 
477 2223344455666 23456 7 
478 2222333345777 1456 14 
479 2224444566667 3578 14 
480 1111234555678 3469 13 
481 1112346788889 5679 13 
482 1234444555678 1369 13 
483 2222333345567 1458 13 
484 2222333345678 1458 13 
485 2222334444556 1367 13 
486 2222334444567 1358 13 
487 2222344678999 1345 13 
488 2223345666678 1349 13 
489 2224455667999 3478 13 
490 2233334444567 1258 13 
491 2233334555567 1248 13 
492 2333345555678 1248 13 
493 2334444555567 1238 13 
494 1122334567778 3689 12 
495 1222334455678 1369 12 
496 1222344556678 1369 12 
497 1222345566778 1369 12 

498 1222345677889 1369 12 
499 2222333344456 1457 12 
500 2222333344556 1457 12 
501 2222333444456 1357 12 
502 2222334455666 1457 12 
503 2222334456666 1347 12 
504 2222344445567 3568 12 
505 2223333445566 1467 12 
506 2223333455667 1467 12 
507 2223455677999 4678 12 
508 1113344556678 2369 12 
509 1113344556789 2369 12 
510 1113345566778 2369 12 
511 1113345667788 2369 12 
512 1113345677889 2369 12 
513 1113445566678 2369 12 
514 1113445566789 2369 12 
515 1113455666778 2369 12 
516 1113455667789 2369 12 
517 1113456677889 2369 12 
518 1113456778899 2369 12 
519 2233334455556 1247 12 
520 2233344556667 1458 12 
521 2233444567778 3689 12 
522 1123344455678 2369 12 
523 2333444556667 2578 12 
524 2333445566678 1247 12 
525 2333455666778 1247 12 
526 1122223456789 1347 11 
527 1222234456789 1347 11 
528 1222234567789 1347 11 
529 1111233345678 2369 11 
530 1111233456678 2369 11 
531 1111233456789 2369 11 
532 1112234567789 2358 11 
533 1122333345678 1269 11 
534 1123333456789 1247 11 
535 1222333345678 1269 11 
536 1222345666678 1239 11 
537 1223333456789 1247 11 
538 1233334455678 4569 11 
539 1233345555678 3469 11 
540 1233444567789 2358 11 
541 1233455666789 2457 11 
542 1234444566789 3569 11 
543 2222333344555 1456 11 
544 2222333444455 1356 11 
545 2222334455677 1467 11 
546 2222334456667 5678 11 
547 2222344455667 1347 11 
548 2222344456678 1347 11 
549 2222344556677 1347 11 
550 2222344566778 1347 11 
551 2223334466678 1469 11 
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552 2223334467888 1458 11 
553 2223345556677 1346 11 
554 2223445667788 3469 11 
555 2223445677889 3469 11 
556 1112334567789 2358 11 
557 1112344566678 3569 11 
558 1112344566789 3569 11 
559 1112345666778 5689 11 
560 1112345667789 5689 11 
561 2233334455678 2569 11 
562 2233344456677 5678 11 
563 2233344466678 2569 11 
564 2233444455567 1258 11 
565 2233444455667 1237 11 
566 2233444456678 1237 11 
567 2233445555667 1467 11 
568 2233445555677 1467 11 
569 2234444566778 2358 11 
570 2234444567789 2358 11 
571 2333344567778 6789 11 
572 2333444455667 1237 11 
573 2333444456678 1237 11 
574 2334444566778 2358 11 
575 2334444567789 2358 11 
576 1112345566789 4567 10 
577 2222333445567 1346 10 
578 2223333444566 1456 10 
579 2223333455777 2456 10 
580 2223344445556 3567 10 
581 2223455667778 4679 10 
582 1112344567999 1478 10 
583 1112345677999 1478 10 
584 1112355566678 1469 10 
585 1112355578999 1469 10 
586 2233334445678 2469 10 
587 2233334455567 2568 10 
588 2233344455677 1467 10 
589 2222333456777 1347 9 
590 2222344456777 1347 9 
591 2223333455567 2458 9 
592 2223333455678 2458 9 
593 2223344555567 2348 9 
594 2223344566678 2569 9 
595 1112233466678 1469 9 
596 2223344578999 2569 9 
597 2223444555667 3467 9 
598 2223444566678 4569 9 
599 2223445556677 3467 9 
600 1112334566678 1469 9 
601 1112334578999 1469 9 
602 2223455556667 2678 9 
603 2223455556677 2678 9 
604 2223456666788 2578 9 
605 2223456677788 6789 9 

606 2223466677889 2569 9 
607 1112355567789 1458 9 
608 2223466778899 2569 9 
609 2233344445566 2367 9 
610 1122334466678 1469 9 
611 2334455566678 2569 9 
612 1223344466678 1469 9 
613 2344455567789 1458 9 
614 2222333445666 1346 8 
615 2222344455566 1456 8 
616 2223333445556 2457 8 
617 2223344455556 2347 8 
618 2223344455677 2567 8 
619 2223444556667 4568 8 
620 2223444556777 3467 8 
621 2222333444555 1345 7 
622 2223333445666 2456 7 
623 2223455566678 2569 7 
624 1112344466678 1469 7 
625 2223455578999 2569 7 
626 2233344556677 2347 7 
627 2233344455566 2356 6 
628 2222333344445 156 11 
629 2224444567999 378 11 
630 2224677788899 345 11 
631 1113333456678 269 10 
632 1113333456789 269 10 
633 1113345666678 239 10 
634 1113456666789 239 10 
635 1122233346678 569 10 
636 1122233346789 569 10 
637 2222334444566 156 9 
638 2222334466678 569 9 
639 2223345566667 134 9 
640 1112346677889 569 9 
641 1112346778899 569 9 
642 2223466667788 259 9 
643 1112356666778 149 9 
644 2233334444556 267 9 
645 2233344456778 679 9 
646 2233444466678 169 9 
647 2234444555567 238 9 
648 1222233466678 569 9 
649 2334444566678 169 9 
650 2222344556777 356 8 
651 1112345677899 689 8 
652 2224455566677 347 8 
653 2224455666778 347 8 
654 2224456667788 347 8 
655 2224556667778 347 8 
656 2233334455566 467 8 
657 2234455556667 347 8 
658 2234455566678 347 8 
659 1112345678899 789 7 

45



660 1122334456789 147 7 
661 1122334566678 369 7 
662 1122334566789 369 7 
663 1122334567789 147 7 
664 1122334567899 369 7 
665 1123344556789 147 7 
666 1123445566789 147 7 
667 1123455667789 147 7 
668 1123456677889 147 7 
669 1223334456678 369 7 
670 1223334456789 369 7 
671 1223344456789 147 7 
672 1223344566678 369 7 
673 1223344566789 369 7 
674 1223344567789 147 7 
675 1223345677789 147 7 
676 1233344556678 369 7 
677 1233344556789 369 7 
678 1233444556789 147 7 
679 1233445566789 369 7 
680 1233445567789 147 7 
681 2222334444555 135 7 
682 2223333444455 256 7 
683 2223334445677 147 7 
684 2223334456667 146 7 
685 2223334467778 147 7 
686 2223344555677 467 7 
687 1112344678999 145 7 
688 2233334455677 267 7 
689 2233344455678 258 7 
690 2233344456788 258 7 
691 2233344467778 257 7 
692 2233444555667 258 7 
693 2233444556678 258 7 
694 2233444566678 369 7 
695 2233444566789 369 7 
696 2233444567899 369 7 
697 2233445566778 258 7 
698 2233445567789 258 7 
699 2233445667778 147 7 
700 2233445667788 258 7 
701 2233445677889 258 7 
702 2234445556667 258 7 
703 2234455666778 258 7 
704 2234455667789 258 7 
705 2234556667778 258 7 
706 2234556677789 258 7 
707 2234566777889 258 7 
708 2333444556678 369 7 
709 2333444556789 369 7 
710 2333445566778 369 7 
711 2333445677889 369 7 
712 1222334567789 258 7 
713 2334445556678 258 7 

714 2334445566678 369 7 
715 2334445566778 147 7 
716 2334445566789 369 7 
717 2334455566778 258 7 
718 2334455567789 258 7 
719 2334455667789 369 7 
720 2334455677889 258 7 
721 1223345567789 258 7 
722 1223345677889 258 7 
723 2344555667789 258 7 
724 1233455567789 258 7 
725 1112355577789 147 6 
726 1233344466678 369 6 
727 2223456777899 789 6 
728 2223466678889 258 6 
729 1112355578889 148 6 
730 1112356778889 148 6 
731 2233334445556 256 6 
732 2233334445567 246 6 
733 1222334566678 269 6 
734 1222344466678 269 6 
735 1222355566678 269 6 
736 1233344456789 347 5 
737 1112334577789 147 5 
738 1112344456789 147 5 
739 1112344567789 147 5 
740 1112345677789 147 5 
741 1222344456789 247 5 
742 1233355567789 358 5 
743 2223344555566 236 5 
744 2223344556788 258 5 
745 2223344567778 257 5 
746 2223344578889 258 5 
747 2223445556678 258 5 
748 2223445566788 258 5 
749 2223445667778 257 5 
750 2223445667888 258 5 
751 2223445678889 258 5 
752 1112334578889 148 5 
753 2223455566778 258 5 
754 2223455567789 258 5 
755 2223455667788 258 5 
756 2223455677889 258 5 
757 2223456778889 258 5 
758 2233445556788 258 5 
759 2233445567778 257 5 
760 2233445578889 258 5 
761 2333455566778 358 5 
762 2333455567789 358 5 
763 2333466677889 369 5 
764 1222355567789 258 5 
765 2223444555566 246 4 
766 2223455567778 257 3 
767 2223455567888 258 3 
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768 2223455578889 258 3 
769 2223457777999 68 8 
770 1223333445678 69 7 
771 1112346666789 59 7 
772 1122233345679 89 7 
773 2334444555667 17 7 
774 2334444556678 17 7 
775 2222334455777 56 6 
776 2224444556677 37 6 
777 2224444566778 37 6 
778 2224456677778 34 6 
779 1233334577789 67 5 
780 1112356777789 14 5 
781 1123444456789 17 5 
782 1123456777789 14 5 
783 1222356777789 24 5 
784 1223333466678 69 5 
785 1233334566678 69 5 
786 1233334566789 69 5 
787 1233456666789 39 5 
788 2222334455567 58 5 
789 2222334455678 58 5 
790 2222334456788 58 5 
791 2222334467778 57 5 
792 2222334467888 58 5 
793 2223444455677 67 5 
794 2223445555667 28 5 
795 2223466777788 25 5 
796 2223467788889 25 5 
797 2233334466678 69 5 
798 2233444456667 16 5 

799 2233444467778 17 5 
800 2233445555678 28 5 
801 2234555566778 28 5 
802 2234555567789 28 5 
803 2234567788889 25 5 
804 2333344566678 69 5 
805 2333344566789 69 5 
806 2333344578889 68 5 
807 2333445555667 38 5 
808 2333445666678 39 5 
809 2333456666778 39 5 
810 1222356666778 29 5 
811 2334456666789 39 5 
812 2223455556788 28 3 
813 2233444556667 36 3 
814 2333444555667 36 3 
815 1233345677789 37 2 
816 1233355577789 37 2 
817 1222334577789 27 2 
818 1222345677789 27 2 
819 1222355577789 27 2 
820 2333445678889 38 2 
821 1222334578889 28 2 
822 2333455578889 38 2 
823 1222345678889 28 2 
824 1222355578889 28 2 
825 2222334445556 5 1 
826 2233334456667 6 1 
827 2233334467778 7 1 
828 2333344556667 6 1 

 

Table 3: Fourteen tile wait patterns. 

 

Acknowledgements 

We wish to thank members of The Australian Riichi Mahjong Association (ARMA) for their assistance. 

 

References 
Cheng, S. T., Chan, A. C., & Yu, E. C. (2006). An exploratory study of the effect of mahjong on the cognitive functioning of 

persons with dementia. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied 

sciences, 21(7), 611-617. 

Cheng, Y., Li, C. K., & Li, S. H. (2017). Mathematical aspect of the combinatorial game "Mahjong". arXiv:1707.07345. 

Chiba, D. (2016). Riichi Book I. A mahjong strategy primer for European players. https://dainachiba.github.io/RiichiBooks/ 

Li, J.,Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu, T. Y., &  Hon, H. S. (2020) Suphx: Mastering 

Mahjong with Deep Reinforcement Learning. arXiv:2003.13590 

Lo, A. (2001). The complete book of mahjong. An illustrated guide to the Asian, American and International styles of play. 

Tuttle. 

Miller, S. D. (2015). Riichi mahjong. The ultimate guide to the Japanese game taking the world by storm. Psionic Press. 

Mizukami N, Tsuruoka Y. Building a computer mahjong player based on monte carlo simulation and opponent models. In 

2015 IEEE Conference on Computational Intelligence and Games (CIG) Aug 2015, 275-283. 

 

47

https://dainachiba.github.io/RiichiBooks/


DETECTING CHANGE IN TONE OF TWEETS AND THE POTENTIAL 

IMPLICATIONS FOR MONITORING MENTAL HEALTH OF ATHLETES 
Paul J. Bracewell a,b , Jason D. Wells a,b , Andy Craig a,c 

a Talennial, Australia 
b DOT loves data, New Zealand 

c Corresponding author: andy@talennial.com 

Abstract 
 

Twitter is an online news and social networking site where people communicate in short messages called tweets. 

This platform and style of communication provides an opportunity for people and organisations to connect with 

followers world-wide.  Twitter provides an API to enable programmatic access to tweets, enabling techniques 

like natural language processing (NLP) to scalably process this massive collection of data.  There is no shortage 

of tutorials and guides on how to use NLP for detecting sentiment, emotions, or topics from machine readable 

test, like tweets.  Schweinberger (2021) provides a simple to use guide for users of the R package.  Bracewell 

(2022) extended the framework outlined in Schweinberger’s tutorial to include brand attributes, like “Being 

Kiwi”.  Here, we introduce a proprietary “Aussie Index”, an Australian equivalent of the “Being Kiwi” metric.  

In addition, principal components are used on 10 years of mainstream media to collapse the eight core emotions: 

Joy, Surprise, Trust, Anticipation, Sadness, Disgust, Anger and Fear to create two further proprietary metrics 

which summarise the “Level of Emotion” and the contrast between “Light versus Dark” emotions.   

     The tweets of a high-profile Australian sportsperson are explored.  The emotions, tone and volume of tweets 

are assessed over a ten-year period.  Prior to their publicised break from competing due to mental health reasons, 

there is a change in tone of messaging.  A drop in the “Aussie Index”, a change in the “Level of Emotion” and 

increasing “Darkness” in emotions are observed.   

     These results do not imply that the detected tone and emotions in tweets predict mental health issues.  Instead, 

this case study suggests that this is a topic worthy of further investigation.  Further research is required to 

determine if it is possible to create a monitoring system, akin to Statistical Process Control, for tracking changes 

in communication styles which may suggest potential issues.   
 

Keywords: Natural Language Processing, NLP, Sentiment, Emotion Detection 
 

1. INTRODUCTION 

Natural language processing is a prevalent technique for scalably processing massive collections of documents. 

This branch of computer science is concerned with creating abstractions of text that summarize collections of 

documents in the same way humans can. This form of standardization means these summaries can be used 

operationally in machine learning models to describe or predict behaviour in real or near real time, as required.  

Bracewell et. al. (2022) outlined several approaches where sentiment had been used by DOT loves data (DOT), 

a Wellington-based data science firm.  He also explained limitations with their existing approach, particularly 

regarding the overly simplistic nature of using just sentiment and volume of articles to summarise topics. 

Bracewell et. al. (2019) outlined an approach which explored the relationship between on-field performance 

and mainstream media perception of athletes. An athlete’s playing reputation was derived from a string of on-

field performances. This is essentially an estimation of their ability as described by Bracewell (2003).  When 

matches are previewed, this playing reputation informs the number of articles featuring an athlete and the 

associated sentiment. That is, players perceived to have better ability are talked about more often and more 

positively.  Performances within a match appear to influence the media post-match review. That is, athletes who 

performed well in a game are more likely to be mentioned and talked about favourably.  This work illustrates 

the potential to combine reputation risk management with both sports ratings and natural language processing 

of mainstream media. Such an approach will enable delivery of a scalable solution for professional athletes and 

their associates to understand the impact of their on-field and off-field behaviour on their personal brand. This 

would aid strategic decisions around the type of content to develop, the best timeline to deploy certain content 

and a measurement tool to assess the impact of that content. Moreover, such a tool could provide the ability to 

identify mental health risks. For example, the resilience of a player to public scrutiny could help understand 

which players need more support.   

The concluding remarks by Bracewell et. al. (2019) about exploring the possibility of identifying mental 

health risks are of great interest.  This forms the basis of this research.  However, this is not a topic to be taken 

lightly.  We do not seek to predict mental health issues.  Instead, this case study suggests that this is a topic 

worthy of further investigation.  Further research is required to determine if it is possible to create a monitoring 
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system, akin to Statistical Process Control, for tracking changes in communication styles which may suggest 

potential issues.   

 

2. DATA 

Twitter is an online news and social networking site where people communicate in short messages called tweets 

(https://twitter.com/). This platform and style of communication provides an opportunity for people and 

organisations to connect with followers world-wide.  The Twitter API enables programmatic access to Twitter 

in unique and advanced ways (https://developer.twitter.com/en/docs/twitter-api).  Twitter go further to provide 

case studies and recommendations regarding how the different endpoints and features available on the Twitter 

API can be used (https://developer.twitter.com/en/docs/twitter-api/what-to-build).   Topics outlined for 

consideration by Twitter include: moderate conversations for health and safety, enable creation and personal 

expression, measure and analyse “what’s happening”, improve community experiences, curate and recommend 

content and impact the greater good. 

 

3. NATURAL LANGUAGE PROCESSING 

Bracewell (2022) extended the framework outlined in Schweinberger’s (2021) tutorial to include brand 

attributes, like “Being Kiwi”, and demonstrated how this peaked during Olympic games and appeared to ebb 

and flow within changes in New Zealand’s response between 2020 and 2022 to the COVID-19 pandemic.   

Here, a proprietary “Aussie Index” is introduced which is an Australian equivalent of the “Being Kiwi” 

metric. The same approach outlined by Bracewell et. al. (2022) is used where the R scripts provided by 

Schweinberger (2021) are modified to customise the word lists for more specific applications.   Simply, within 

that script is a carefully compiled dataset, “nrc” which appears in this line: 

 

dplyr::inner_join(get_sentiments("nrc"))         (1) 
 

This data set was replaced by a proprietary dataset suitable for use within the Australian context.  

Importantly, the proprietary dataset is highly configurable.  To build out this data set, synonyms and slang used 

in distinctly Australian settings were researched, curated and collated for use. These were developed in 

conjunction with Australian-based data led brand and collaborator marketing company, Talennial 

(www.talennial.com). 

In addition, principal components are used on 10 years of mainstream media (1st January 2009 to 31st 

December 2018) to collapse the eight core emotions: Joy, Surprise, Trust, Anticipation, Sadness, Disgust, Anger 

and Fear to create two further proprietary metrics which summarise the “Level of Emotion” and the contrast 

between “Light versus Dark” emotions.  These two principal components explain over 60% of the variation.  In 

addition, the both eigenvalues exceed 1, and are the only two dimensions to do so. 

 

4. SUBJECT 

Importantly, mental heath issues are a fraught topic, and this research is not undertaken without serious 

consideration of the moral and ethical implications.  We are dealing with personal and private information.  

However, the subject of this research has spoken openly in the media about this topic.  Furthermore, we believe 

we are undertaking this research for the greater good.  We are only using data that is publicly available.   

Australian, Glenn Maxwell, is a talented batting Allrounder who has represented his country at international 

level in all three formats of cricket (see: https://www.espncricinfo.com/player/glenn-maxwell-325026). 

Middleton (2019, October 31) announced Glenn Maxwell had withdrawn from Australia's T20 International 

squad and would take a “short” break from cricket to deal with mental health issues. Later, on March 25th, 2020 

the Sydney Morning Herald (www.smh.com.au) published an article online titled: “Glenn Maxwell details his 

mental health demons”.  Below is the opening few lines of that article: 

 

“A mentally exhausted Glenn Maxwell wanted his arm to be broken during Australia's 

World Cup campaign last year so he could have a break from international cricket. He 

didn't realise it at the time but the star all-rounder was battling mild depression and 

anxiety. Falling into a dark place would eventually lead to Maxwell stepping away from 

the game last October for more than a month.” 

 

These two articles provide sufficient information to begin compiling data.  Maxwell is verified on Twitter 

as “gmaxi_32”.  This provides sufficient information to extract his tweets using the Twitter API. 
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4. METHOD 

Glenn Maxwell tweets, from his account, g maxi_32, were extracted between March 2011 and September 2021.  

These were then pass through the NLP algorithm described previously which appended to every tweet: sentiment 

polarity; eight emotions: Joy, Surprise, Trust, Anticipation, Sadness, Disgust, Anger and Fear; “Level of 

Emotion”, “Light versus Dark” and the “Aussie Index”.  These attributes were averaged per day.  In addition, a 

28 day rolling average was applied.  These metrics were plotted and step changes were assessed.  For the emotion 

and the Aussie Index, these are rated per 100 content words.  Content words include nouns, verbs, adjectives 

and adverbs.  The two principal component derived metrics “Level of Emotion” and “Light versus Dark” are 

from the mainstream media population of articles, with population has a mean of 0 and standard deviation of 1. 

 

5. RESULTS 

Annotated graphs displaying the metrics per day (dots) overlaid with the 28-day rolling average (solid line) 

follow.  The vertical line indicates 31 October 2019 which is the day of the Cricket Australia announcement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Log of the Number of Tweets per day between March 2011 and September 2021 by Glenn Maxwell 

 

Figure 1 shows Glenn Maxwell was highly active in the early part of the 2010s.  However, the average number 

of tweets per week dropped gradually leading to his break from the game in October 2020.  This provides 

important context for reviewing the graphs that follow, particularly the continued activity. 

 
Figure 2: Time series plot showing the prevalence of the “Aussie Index” per 100 Content Words between 

March 2011 and September 2021 for Glenn Maxwell from his public tweets. 
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Figure 3: Time series plot showing the prevalence of the emotion, Trust, per 100 Content Words between 

March 2011 and September 2021 for Glenn Maxwell from his public tweets. 

 

 

 

 

 

 
Figure 4: Time series plot showing the prevalence of the emotion, Sadness, per 100 Content Words between 

March 2011 and September 2021 for Glenn Maxwell from his public tweets. 
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Figure 5: Time series plot showing the “Level of Emotion” in Glenn Maxwell’s public tweets between March 

2011 and September 2021 

 

 

 

 

 

 

 
Figure 6: Time series plot showing the “Tone of Emotion” in Glenn Maxwell’s public tweets between March 

2011 and September 2021 
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5. DISCUSSION 

The graphs (Figures 2-6) show a change in the topics, type of emotion and tone of tweets over a two year period 

of continued activity on Twitter by Glenn Maxwell (Figure 1) from his verified gmaxi_32 account.  Importantly, 

this does not mean that the output can be used to predict looming mental health issues but serves as an indication 

this type of process could be worthy of further exploration.   

Figure 2 shows a distinct change in the “Aussie Index”.  Did Glenn Maxwell lose his Authentic Self? Despite 

continued engagement on twitter, Maxwell had a substantial shift in topic discussion around the end of January 

2017. 

Trust as an emotion dropped considerably post this shift in topic discussion in late January 2017 from 3.45 

content words per 100 to 1.79 content words per 100 prior to 31 October 2019, falling further to 1.60 from 31 

October 2019 to September 2021 as shown in Figure 3. 

Figure 4 shows that sadness as an emotion trended downwards to become almost negligible from 

February\March 2018. Sadness spikes to 5.0 content words per 100 in the lead up to 31 October 2019. 

The concepts derived from the interpretation of the principal component analysis: “Level of Emotion” and 

emotional tone, “Light versus Dark” are shown in figures 5 and 6.  These metrics are comparable to mainstream 

media where the population mean is 0 and standard deviation is 1.   Figure 5 reveals that the level of emotion in 

Maxwell’s tweets dropped substantially post January 2017, hitting a low in October 2018. However, there was 

a comparative jump in August 2019, but still low compared to his pre-2017 tweets.   Increasingly dark emotions 

are shown in Figure 6.  Min particular, the emotions expressed via Tweets become increasingly dark from August 

2015, before climbing to being on the light side for the 2016/17 Cricket Season. However, post January 2017 

his emotions continued to become darker with sustained low for over a month prior to his decision to withdraw 

from the Australian Cricket Team in October 2019. 

 

6. CONCLUSION 

The tweets of high-profile Australian cricketer, Glenn Maxwell were investigated using natural language 

processing. The emotions, tone and volume of tweets were assessed over a ten-year period.  Prior to his 

publicised break from competing due to mental health reasons, there is a change in tone of messaging.  A drop 

in the novel, proprietary “Aussie Index”, a change in the “Level of Emotion” and increasing “Darkness” in 

emotions were observed.   

     These results do not imply that the detected tone, emotions and topics in tweets predict mental health issues.  

Instead, this case study suggests that this is a topic worthy of further investigation.  Further research is required 

to determine if it is possible to create a monitoring system, akin to Statistical Process Control, for tracking 

changes in communication styles which may suggest potential issues.   
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Abstract 
 

Natural language processing is a prevalent technique for scalably processing massive collections of documents. 

This branch of computer science is concerned with creating abstractions of text that summarize collections of 

documents in the same way humans can.  Bracewell et. al. (2016) outlined a method for quantifying the collective 

mood of New Zealanders using mainstream online news content. Mood was quantified using a text mining 

pipeline built with the Natural Language Toolkit (Bird, 2009) in Python to measure the sentiment of articles and 

comments appearing in mainstream New Zealand media.  A more refined approach is outlined by Schweinberger 

(2021) where distinct emotions are assessed. Here, that approach is extended further to include a proprietary 

attribute defined as “Being Kiwi”, where over 200 words that are readily associated with New Zealand’s national 

identity, like: “haka”, “bbq”, “bach”, “kiwi”, are tracked over time.  Plotting the prevalence of “Being Kiwi” 

over the last decade reveals the highest points coincide with Olympic games.  This has important implications 

for tracking brand values and attributes over time regarding attracting and aligning sponsors.   
 

Keywords: Natural Language Processing, NLP, Sentiment, Emotion Detection 
 

1. INTRODUCTION 

Text Mining, Natural Language Processing (NLP) and Natural Language Generation (NLG) are well described 

in academic literature.   Natural language processing is a prevalent technique for scalably processing massive 

collections of documents. This branch of computer science is concerned with creating abstractions of text that 

summarize collections of documents in the same way humans can. This form of standardization means these 

summaries can be used operationally in machine learning models to describe or predict behaviour in real or near 

real time as required.  The predictive fill features within word processing tools like Google Docs and the 

Microsoft Outlook App show mainstream usage of NLP and NLG. 

 DOT has had success in applying NLP to a range of text sources, particularly looking at sentiment.   Initial 

applications explored the concept of mood, derived from sentiment (Bracewell et. al. 2016).  Sentiment was 

quantified using a text mining pipeline built with the Natural Language Toolkit (Bird, 2009) in Python to 

measure the sentiment of articles and comments appearing in mainstream New Zealand media.   Commercially, 

DOT has explored the relationship between brand sentiment and churn rates.   However, to protect client 

sensitivities, DOT ahs often reframed these problems to explore concepts relating to topical, current events to 

publish findings.   

     Different NLP applications have been previously published ranging from using commentary sentiment as a 

predictor of in-game events in T20 cricket (McIvor et. al., 2018), predicting win margins with sentiment analysis 

in international rugby (Simmonds et. al. 2018), exploring player ratings and online reputation in Super Rugby 

(Bracewell, et. al., 2019) and an analysis of media reporting of extreme family violence in New Zealand 

(Dissanayake et. al., 2021) 

     However, these approaches tended to lend themselves to one-off static reports and did not necessarily lead to 

ongoing engagements and systematic monitoring.   The intent was to make use of one massive, publicly available 

source of data.  Then, from that source, automatically deliver customisable and relevant outputs to many distinct 

clients from varied backgrounds: business, sport, and politics for example.   

 Dissanayake et. al. (2021) provides the most recent overview of DOT’s collation of mainstream media 

articles, called Pressroom.  To date, this archive contains approximately 10 million news articles published 

within publicly available main-stream media platforms dating back to 2005 and contains comprehensive 

collections of articles published on New Zealand websites. The Pressroom is used to report on current events 

and to track trends in both media reporting and social opinion. 

 We hypothesised that the difficulty in embedding the outputs within an organisation as an ongoing process 

stems from the lack of more granular insight, difficulties in objectively displaying the outputs and diminished 

transparency of outputs.  The output of the initial processing, sentiment and number of articles, was too simplistic 

and lacked enough detail to help connect the user with their understanding of the problem domain.  This inability 

to connect the user with the content creates a barrier to understanding and therefore diminishes trust in the output. 

 

  

55



2. METHODS 

DATA 

The depth and breadth of data contained within the proprietary Pressroom provides a unique opportunity within 

NZ to configure unique tools for mass market use pertaining to reporting on current events.  With millions of 

time stamped articles to explore, this rich source of data allows NLP tools to be trained within a New Zealand 

context.  More importantly, given the volume of data, metrics generated can be scaled to create outputs that are 

relatable, comparable, and trackable.    This helps bring context to the data by relating to the real world and 

helping build trust in the outputs.  Furthermore, the temporal component can be used to create ongoing 

engagement, provided meaningful connection between the NLP outputs and client objectives can be achieved. 

 

NLP ALGORITHM 

To extract distinct emotions from the data, the more refined approach outlined by Schweinberger (2021) was 

applied.  Exploration of the applicability of this tool formed the basis on an investigation of historical text and 

the implications of language evolution in a North American context (Soiferman et. al., 2022). Specifically, the 

change in emotion associated with key words can be aligned to major events. This research highlighted the need 

to evaluate the stability of characteristics, including features engineered based on word elements when deploying 

operational models.  This is an important issue to ensure that machine learning models constructed to summarize 

documents are monitored to ensure latent bias, or misinterpretation of outputs, is minimized 

 As a further challenge, sentiment algorithms are based on text trained with overseas acquired data sets and 

do not necessarily reflect the New Zealand context.  We have had repeated requests regarding the inclusion of 

Māori. 

 The tutorial prepared by Schweinberger (2021) provides a simple to use guide for users of the R package 

with code supplied.  It is a straightforward task to work within that framework to customise the word lists for 

more specific applications.   Simply, within that script is a carefully compiled dataset, “nrc” which appears in 

this line: 

 

dplyr::inner_join(get_sentiments("nrc"))         (1) 
 

This data set was replaced by a proprietary dataset suitable for use within the New Zealand context.  Importantly, 

the proprietary dataset is highly configurable.  As part of ensuring this data fits the intended use case, Māori 

terms are included, with our early work in modifying this data set covered in, national media outlet, Spinoff 

(Sowman-Lund, 2021).   

Here, that approach is extended further to include a proprietary attribute defined as “Being Kiwi”, where 

over 200 words that are readily associated with New Zealand’s national identity, like: “haka”, “bbq”, “bach”, 

“kiwi”, are tracked over time.  Bracewell (2022) extended the framework outlined in Schweinberger’s tutorial 

to include additional brand attributes, like “Competitive” and a “Being Kiwi” equivalent, plainly named the 

“Aussie Index”.  These were developed in conjunction with Australian-based data led brand and collaborator 

marketing company, Talennial (www.talennial.com). 

A core component of developing these techniques is validation against an external context.  This is described 

in the next section. 

 

3. RESULTS 

The process for assigning sentiment, emotions and brand attributes strips out words that are not deemed 

important like: “the”, “and”, “then” and “a”. This leaves content words, which include nouns, verbs, adjectives 

and adverbs.  Content words are then matched with one of more emotions, themes or brand attributes.  To create 

a prevalence score per 100 words.  The first exploration of “Being Kiwi” is shown in Figure 1.   The monthly 

average per month for the prevalence of “Being Kiwi” is approximately 0.244 for the period prior to January 

2020. That is, for every 1000 content words, 2.44 of those words are related to “Being Kiwi.  The period post 

January 2021 is explored in Figure 2.   Over the last decade reveals the highest points coincide with Olympics 

games as shown in Figure 1.   The 2012 Summer Olympics were held from 27 July to 12 August 2012 in London, 

England, United Kingdom. The 2016 Summer Olympics, known as Rio 2016, were an held from 5 to 21 August 

2016 in Rio de Janeiro, Brazil.  The 2020 Summer Olympics, known as Tokyo 2020, were held from 23 July to 

8 August 2021 in Tokyo, Japan.  To account for seasonality, and to account for any potential impact due to other 

annual events, we compare the month of the event with the same month the year prior.  This reveals that “Being 

Kiwi” had a year-on-year increase of 19%, 17% and 28% for the 2012, 2016 and 2020 Olympics respectively.  

These are the major peaks as observed in Figure 1, which has important implications for tracking brand values 

and attributes over time regarding attracting and aligning sponsors. 
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Figure 1: Time series plot showing monthly average of “Being Kiwi” words per 

100 content words over a ten-year period (1 March 2012 to 28 February 2022) 
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Figure 2: Time series plot showing 28 day rolling average of “Being Kiwi” words per 100  

content words over an approximately two years (1 January 2020 to 28 February 2022) 
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Regarding Figure 1 and observing the spikes due to the Olympics raises questions about the role of rugby on 

New Zealand’s national identity.  This topic was explored by Bracewell et. al. (2016) where sentiment was found 

to but statistically significantly, and positively shifted by the All Blacks 2015 World Cup success.  However, 

the Olympics appears to dominate on this novel index.  This may be shaped by certain words used in creating 

the “Being Kiwi” metric.  However, a more detailed investigation of an embedded period provides further 

support for this metric representing the New Zealand “way of life”. 

That is, an interesting feature of the decade long view of “Being Kiwi” is the apparent drop following January 

2020.   To investigate this further, a 28-day rolling average of the prevalence of “Being Kiwi” per 100 content 

words was explored and plotted over nearly two years.  Several the peaks and troughs are explored.   

Coinciding with this time frame is the COVID-19 pandemic in New Zealand.  This is part of the ongoing 

pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2). The first case of the disease in New Zealand was reported on 28 February 2020.   Key events 

are annotated on Figure 2, with more detailed information available from the NZ Government at the following 

website: https://covid19.govt.nz/about-our-covid-19-response/history-of-the-covid-19-alert-system/.  That 

website provides specific details about how New Zealand handled the response to COVID.  Interestingly, troughs 

appear to occur when parts of New Zealand went into Lockdown or faced restrictions.  Level 4 was the harshest 

of the restrictions in New Zealand under the Covid Alert System and Level 1 the least restrictive.  Late in 2021 

this operating framework migrated to a Traffic Level System under the Covid Protection Framework, with the 

red setting the strictest and green the most open.   

Of particular interest is the apparent increases in “Being Kiwi” when restrictions were eased.   This suggests 

that the data may be identifying features of relevance in quantifying the New Zealand way of life. 

 

4. DISCUSSION 

A core component of developing these techniques is validation against an external context.  In the previous 

section, two periods were examined.  The first analysis showed that during periods of Olympic competition there 

were between 17% and 28% increases in the metric for the number of content words per 100 associated with 

“Being Kiwi”, compared with the same month the year prior. Given the Olympics is an opportunity for New 

Zealand to present itself on the world stage, this suggests that this algorithm is detecting some useful features 

regarding how journalists write about New Zealand athletes during this period of competition.  

     Then, a more granular review of how this metric evolved daily whilst New Zealand was in the depths of a 

response to the COVID-19 global pandemic was undertaken.  Here, it appeared that when New Zealand went 

into more restrictive states, such as lockdowns, journalists did not use as many words in articles that would 

typically be associated with “Being Kiwi”.  Furthermore, as restrictions eased, there appears to be a 

contemporary increase in the use of words associated with “Being Kiwi”.   

    Given that changes in the proposed metric, “Being Kiwi” appears to change as events affecting New 

Zealanders unfolded, it is not unreasonable to make the observation that the “Being Kiwi” metric identifies 

phrases and words that are aligned with New Zealand’s national identity.   

 

5. CONCLUSIONS 

As New Zealanders experienced a roller coaster of self-identification in the wake of various Covid-19 Alert 

System Levels, there was one shining light for Kiwis, the 2020 Tokyo Olympics, which ended on 9th August 

2021.  This was measured by expanding on the work by Schweinberger (2021).   That approach was extended 

further to include a proprietary attribute defined as “Being Kiwi”, where over 200 words that are readily 

associated with New Zealand’s national identity, like: “haka”, “bbq”, “bach”, “kiwi”, are tracked over time.  

Plotting the prevalence of “Being Kiwi” over the last decade reveals the highest points coincide with Olympic 

Games.  The implication is that the reporting in mainstream media around the Olympics uses key words that are 

associated with the New Zealand national identity. This has important implications for tracking brand values 

and attributes over time regarding attracting and aligning sponsors.    The extension to explore daily movements 

relative to issues affecting all New Zealanders provides further validation of this metric. 
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Abstract 
 

The timing of substitutions in the NBA is influenced by several in-match and pre-match factors. While some 

teams adhere to a static, pre-determined schedule, others adopt a more dynamic approach, rotating players based 

on the state of the game. The primary objective of this study was to define the range of substitution strategies 

used by NBA teams in the 2019-2021 seasons. Secondary objectives were to measure the similarity between 

teams’ substitution strategies and to analyse their predictability. K-means analysis was used to cluster 

substitution strategies. A team’s substitutions within a quarter were represented as an n-tuple, where each 

element denotes the time of a substitution (measured in seconds since the beginning of the quarter). The number 

of substitutions per quarter varies, hence tuples were transformed to achieve consistent dimensionality for 

clustering. Two methods were tested for this transformation. K-nearest-neighbor classification was used to 

predict the timing of a team’s substitutions. Accuracy of these models were compared amongst teams to quantify 

the predictability (estimated via model error) for all teams in the NBA. 
 

Keywords: NBA, basketball, clustering, interchanges, rotations, team sports, rotations 
 

1. INTRODUCTION 

Stint duration and substitution timing has been a commonly researched topic in team sports literature. In 

particular, there has been a focus on optimising player performance through substitution strategies. In AFL, for 

example, Corbett et al. (2017) found a weak relationship between physical performance and stint duration. 

Similar research in field hockey identified the fifth minute of play as being one where fresh players experience 

signs of fatigue (Linke & Lames, 2016). Linke and Lames (2016) additionally note, however, that player 

performance in the first minute of play following a substitution is significantly higher than the team average, 

noting the tactical advantage of substituting players. In an era where player management is of increasing 

importance (particularly to minimise injuries), further research into the trends and optimisations of substitution 

strategies is required. 

In this study we present methods for analysing the timing of substitutions in the NBA. Games in the NBA 

contain an unequal number of substitutions due to limited rules regarding their timing, hence there is a great deal 

of diversity between teams in their approach to substitutions. The primary objective of this study was to define 

the variety of substitution strategies employed by teams. Unsupervised machine learning techniques were used 

to partition substitution time series into clusters. From this, we measure the similarity of teams in the NBA and 

produce a supervised machine learning model capable of predicting substitutions towards the end of a quarter 

based on the observed substation timings in the preceding minutes of play. 

 

2. METHODS 

DATA COLLECTION AND PRE-PROCESSING  

Data was collected from all matches played during the 2019-2021 NBA seasons as of March 2022. Second 

Spectrum1 player tracking data was used in this analysis. While player tracking data was not required for the 

analysis conducted in this study, these datasets can be used as a source for substitution times. At any point in 

time, the position of the five on-field players on each team is tracked in 25Hz using optical tracking systems. 

We obtain the exact frame that a substitution occurs by monitoring changes in the on-court player IDs. 

An NBA match consists of four 12-minute (720 second) quarters in the case of no overtime play. In the 

event of a draw at the end of the fourth quarter, teams continue playing in five-minute overtime periods until a 

winner is declared. In this study, we analyse substitutions occurring in the four regular 12-minute quarters. 

Player tracking data was incomplete or missing for a small number of matches in the analysed seasons. 

Incomplete matches were dropped from the analysis. All 30 NBA teams were included in this study, and a total 

of 3230 matches played between October 2019 and March 2022 were analysed. 
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SUBSTITUTION TIME SERIES SAMPLES 

A team’s substitutions within an individual quarter were represented as an n-tuple, with each element denoting 

the time (in seconds) where a substitution occurred. For example, the tuple (299, 377, 503, 503, 503) indicates 

a quarter where a single player was substituted at 299 seconds, another single player at 377 seconds, and finally 

three players at 503 seconds (4:59, 6:17, and 8:23 minutes respectively). For the purpose of clustering quarters, 

quarters where 0 substitutions occurred were dropped from the dataset. There is no strict rule requiring or 

restricting the number of substitutions in a quarter (or game), resulting in a varying number of substitutions in 

each sample. Across the analysed matches, an average of 5.4 ± 2.2 substitutions occurred per team each quarter. 

The total number ranged between 1 and 18 substitutions, and the median was 5. 

The number of substitutions varies between samples; hence transformation was required before each sample 

could be clustered. Two methods for performing this transformation were trialled. The first approach involved 

partitioning each 12-minute quarter into one-minute bins (0-1 minutes, 1-2 minutes, etc.). Each sample was then 

represented as a 12-tuple, where each element (n) records the number of substitutions that occurred in the nth 

minute. This process produces a dataset containing quarter substitution time series of equal size for all matches. 

The result is easy to interpret, however discretising data can produce misleading results in the case of samples 

falling close to the bounds of each bin. 

The second transformation technique involved using kernel density estimation (KDE) to produce a 

continuous time series (at one-second intervals) of substitution density. KDE involves estimating the probability 

density function of a time series, producing a smooth density curve. The bandwidth of the kernel determines the 

amount of influence each data point (or substitution) has over the time around it. Scipy’s implementation of 

KDE was used in this study (Virtanen et al., 2020). Bandwidth selection was set to Scott’s factor (Scott, 2015) 

divided by four to minimise smoothing across the quarter (and produce a shape that retains the timing of 

substitutions). The advantage of this transformation technique is we produce a continuous time series; however, 

this may be harder for coaching staff to interpret. 

Examples of each transformation technique are presented in Figure 1. In each plot, the continuous line is 

the KDE representation of a substitution time series, and the discrete bars are the binned representation of the 

same sample. The example on the left is of a quarter were 3 substitutions occurred in the third minute, following 

single substitutions in the 4th, 5th, 7th, 8th, 11th, and 12th minutes. The example on the right has a total of 11 

substitutions, roughly grouped around the start, middle, and end of the quarter. 

 

 

 
Figure 1. Histogram and KDE representations of two substation time series 

 

 

 

MEASURING TEAM SIMILARITY 

The similarity between each team in the NBA is measured based on the substitutions they performed across the 

analysed seasons. For each team, we produce a dataset of their transformed substitution samples. Euclidean 

bipartite matching between teams A and B is used to measure the similarity between the two teams. The 

Euclidean bipartite matching process involves pairing samples from dataset A and B, such that the total Euclidean 

distance between the matched pairs is minimised (Mézard & Parisi, 1988).  

From this process, we produce a cost matrix measuring the distance between each team in the NBA. Teams 

are clustered via hierarchical clustering (using a 70% distance threshold for creating clusters). This process was 

performed for both methods of transformation detailed in the section above to compare results using either 

method. 
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CLUSTERING QUARTERS 

K-means clustering was used to cluster substitution samples. K-means clustering is an unsupervised machine 

learning technique used to partition data samples into groups based on the distance (commonly the Euclidean 

distance) between samples and cluster centres. This technique has been applied to a variety of sports analytics 

problems such as the grouping of teams based on playing style (e.g., Spencer et al., 2016). The number of clusters 

(k) was chosen based on the elbow method, in which k is chosen as the point from which increasing k has a 

reduced effect on minimising the total error (in our case, the sum of squared distances between samples and 

cluster centres) (Kodinariva & Makwana, 2013).  

 

PREDICTING SUBSTITUTIONS 

A secondary objective of this study was to assess the predictability of substitution strategies within NBA teams. 

While this is a complex topic and grounds for future research, we propose the accuracy of predictive models as 

a proxy for quantifying teams’ ‘predictiveness’. To measure this, we use the k-nearest-neighbours (kNN) 

algorithm to predict a team’s substitutions for the remainder of a quarter after time t, given their substitutions in 

the quarter up to time t. In this study, t = 360s (i.e., we observe behaviour in the first half of a quarter to predict 

behaviour in the second half). KNN classification involves classifying a sample’s class based on the Euclidean 

distance between the sample and training samples (Peterson, 2009). Performance is optimised via adjusting the 

value for k which determines how many neighbours the prediction is based on.  

Model inputs are the KDE representation of each quarter up to 360s, and the output (or response variable) 

is its cluster (from the k-means analysis detailed in the previous section). If we can accurately predict the cluster 

that a partial time series belongs to, we can output the likely shape for the remainder of the quarter. We use an 

80/20 split for our training and testing datasets. Model performance was evaluated via raw predictive 

performance (i.e., the percentage of correctly labelled results), as well as via log-loss (Eq. 1) which considers 

the predicted probabilities when assessing model performance. A smaller log-loss value indicates a stronger 

model. To analyse the predictability of teams we output the log-loss of each team. Log-loss is calculated as 

follows, 

 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 =  −
1

𝑁
∑ ∑ 𝑦𝑖𝑗 log (𝑝𝑖𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

 (1) 

where, 

 N No. of rows in test set 

 M No. of classes    

 yij 1 if observation belongs to class j; else 0 

 pij Predicted probability that observation belongs to j 

 

 
 

 

 

3. RESULTS 

TEAM SIMILARITY 

Dendrograms produced from the distance matrices using discrete transformation via binning (Figure 2) and KDE 

transformation (Figure 3) are presented below. We focus on the positioning of the San Antonio Spurs (SAS). 

Using the discrete transformation method, SAS are grouped with Memphis Grizzlies (MEM), Milwaukee Bucks 

(MIL), and Utah Jazz (UTA). Using KDE transformation, SAS remain grouped with MEM and MIL, while 

being one group detached from UTA. Additionally, Charlotte Hornets (CHA) joins the group despite larger 

separation in the discrete transformation method. 

 

QUARTER CLUSTERS 

A total of 30 clusters were chosen for the k-means clustering of quarter time series. Clustering was performed 

on quarter samples transformed using the KDE transformation method. The centres of these clusters (0 through 

to 29) are presented in Figure 4. A variety of strategies are represented within these 30 clusters, such as quarters 

where substitutions occurred only at single points during a quarter (e.g., cluster 15, 16, 17) or quarters were 

substitutions occurred at the beginning of a quarter, followed by a second group of substitutions later in the 

quarter (e.g., at the beginning and middle of a quarter in cluster 0, or at the beginning and end of a quarter in 

cluster 6). 
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Figure 2. Hierarchical clustering of teams using the one-minute bins transformation method 

 

 

 

 
Figure 3. Hierarchical clustering of teams using the KDE transformation method 

 

 

 

kNN PREDICTION RESULTS 

A kNN model was trained using substitution time series for the first half of each quarter. A k value of 50 was 

used in this process. Values beyond 50 yielded minimal improvements to overall performance. Using a 360-

second window (or half a quarter), the model was able to successfully predict 59% of quarter clusters.  

Examples of the prediction process are displayed in Figure 5. As detailed above, we use a 360-second (half 

a quarter) training window to predict what teams will do in the remaining 360-seconds of a quarter. The blue 

line is the ground truth time series (transformed via KDE). The dotted lines represent the kNN predictions for 

the remainder of each quarter. The confidence of each prediction is denoted in the legend of each plot. In some 
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cases (e.g., Figure 7a) the algorithm has high certainty in a single cluster, while others (e.g., Figure 7b) the 

prediction can be spread across more clusters. 

 

 

 
Figure 4. Time series plots of the 30 clusters produced by k-means clustering 

 

 

 

 
Figure 5. Example predictions after the 6th minute using k Nearest Neighbor (kNN) classification with labeled 

probabilities for predictions (dashed lines) 

 

 

Finally, we measure the log-loss of predictions, grouped by team, and present these results in Figure 6, 

ordered by log-loss (where a smaller number indicates lower error or better predictability). After discussion with 

coaching and sport science staff, Phoenix Suns (PHX) and MIL were identified as two high performing teams 

across the analysed seasons (having topped the conferences in the 2021-22 season and made playoffs in the 

2020-21 season). Based on log-loss, PHX and MIL were middle of the pack in terms of predictability.  
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Figure 6. Loss-loss of kNN predictions for each team in the NBA 

 

 

4. DISCUSSION 

This study presented a method for defining substitution strategies in the NBA using k-means clustering on 

substitution time series for individual quarters. This output was used to measure the similarity between teams, 

and to predict future substitution behaviour based on substitutions up to the middle of the current quarter. 

Two processes were trialled for transforming the substitution time series into samples of equal dimensions 

for clustering. The first involved partitioning the quarter into 12 one-minute bins and counting the number of 

substitutions that occurred in each bin. This process discretises the data. The second process retains the 

continuous nature of these substitutions by converting the time series into a smoothed time series measuring the 

density of substitutions across the 720 seconds of each quarter (via KDE). While this output produces a 

continuous dataset, its interpretability by coaching staff should be researched. In general, we might suggest that 

the discrete, binned dataset produces an output that is easier to interpret to a wider audience (Figure 1). The 

downside of the binning process, however, is that the use of arbitrary bounds can result in datasets having large 

Euclidean distances between them despite interchanges occurring at similar times. As an extreme example, 

substitutions occurring at 0:59 and 1:01 would be considered as far apart as substitutions occurring at 0:01 and 

1:59. In the case of KDE transformation, the former pair would have minimal distance between them. 

Predicting substitution behaviour in the second half of a quarter based on the timing of substitutions in the 

first half yielded strong results, with the correct cluster predicted in 59% of testing samples. Future research into 

how this performance changes based on a variety of match conditions should be conducted. For example, the 

addition of match information (e.g., score-line differential) may improve model prediction. In team sports 

literature it has been shown that the strategy and positioning of teams changes because of situational variables 

such as match location and opponent quality (Santos et al., 2017). It is likely that these factors would also have 

an impact on substitution timings. Behaviour in the fourth quarter, for example, is likely to be heavily influenced 

by the status of the game. These factors present an opportunity for future research to improve model prediction 

and quantify specific factors that cause NBA teams to make substitution decisions. An alternative approach to 

this topic could involve the use of association rules. Association rules can be used to determine the effects of 

match context on a fixed response variable (e.g., how kicking constraints affect kicking success in the AFL in 

the case of Robertson et al., 2019). 

This study presented one method for measuring the predictability of teams via the log-loss of team-specific 

substitution predictions. In highlighting two top performing teams across the analysed seasons (PHX and MIL), 

we note that there is no clear trend as to whether being more or less predictable (as quantified via the presented 

methodology) improves a team’s performance. Further research is required to analyse predictability relating to 

a variety of match factors, such as those touched on above. 

 

5. CONCLUSIONS 

This study presented a method for defining the range of substitution strategies employed by NBA teams in the 

2019-2021 seasons. Using transformed substitution time series, team similarity was measured using Euclidean 

bipartite matching. Results revealed consistency in the similarity between SAS and a number of teams, however 
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there were differences in the number of clusters and positioning of some teams when taking a discrete (via 

binning) or continuous (via KDE) approach to the transformation of substitution time series samples. The 

predictability of teams was assessed via a kNN classification model to predict a team’s likely substitution pattern 

in the second half of a quarter, given the timing of their substitutions in the first half of said quarter. We found 

that the predictability of teams varies greatly throughout the league. Finally, analysing PHX and MIL’s 

performance (as recent conference winners) did not reveal clear trends in a specific substitution style relating to 

success in the NBA (or their ability to be more or less predictable). 
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Abstract 
 
Live data collection is nothing new in sport. However, the ability to turn said data around into salient and 
actionable outcomes during a game remains a challenge. For the last six years, the authors have been analysing 
netball at both national and international levels. This includes, from team-based metrics to individual outcomes. 
As such, as performance analysts, they have been able to convey live data and live insights to coaches and 
players in their specific teams. However, being able to generate inferential outcomes in time-poor scenarios 
remains a challenge. The authors discuss existing techniques that have been used to convey outcomes during a 
match scenario, such as video, and some connections that are of influence. They then propose how to use network 
analysis from live possession data to ascertain pivotal players and then peel back the factors of influence in a 
game. Some examples of the models used are shown, and their relationship to outcomes. 
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Abstract 
 
Using the scoring of goals, and their misses, we evaluate the importance of a shot in netball. We consider both 
national and international games which, in Australia, currently have very different scoring systems. The “Super 
Shot” in Suncorp Super Netball (SSN), the Australian domestic league at time of writing, affords two goals if 
successful, and is awarded from a range of three metres or more from the post while still inside the shooting 
circle. With its additional degree of difficulty to the shot comes a greater reward. Whilst Fox & Bruce (2020) 
published the success and expected value of this shot, we consider here the importance in the outcome of a goal 
made or missed from all four possibilities (in SSN), and two in conventional netball. Thus, through evaluation 
of two years of SSN data and International and Domestic games, we find that strategies require variation 
depending upon the margin, time of game, and mode of game. We utilise a Brownian motion variant to estimate 
the probability of a goal scored, and utilising modifications of Morris’ (1977) model for Importance, this enables 
determination of strategy dependent upon outcome. Most notably, and obviously, the Super Shot yields big 
rewards and bigger consequences if missed, however the state of the game provides great insight into the desire 
to take risky shots. 
 
 
Keywords: Brownian motion, netball, importance 
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Abstract 

The Olympic motto, Citius, Altius, Fortius, was coined by Father Henri Didon in 1891, to teach athletes to do 

their best to run a bit faster, to jump a bit higher and to become a bit stronger than before. He didn’t say anything 

about beating anyone, setting a record or being on a team.  Following his meaning, when a young person enters 

sports, they accept the “new normal” of that day, using then-available nutrition, training and equipment to 

produce increasing amounts of power. They use then-available coaching and techniques to turn that power into 

increased performance.  At the same time, others are working to improve those factors. The best of those 

improving athletes will compete on sports teams, the best of them will be on national teams, the best of them 

will win medals and the best of them will set records, due to the cumulative effect of self-improvement. For 

example, using Olympic championship performances from 1928 to 2020/21, the Percent Improvements per 

Olympiad (%I/O) led to cumulative improvements creating previously unimaginable performances. In running, 

the %I/O (with cumulative improvement in parentheses) for women were 0.7% (15%) and for men 0.5% (10%). 

For jumping, women achieved 1.4% (29%) and men achieved 1.0% (21%). In swimming women achieved 1.6% 

(33%) while men achieved 1.4% (28%). Michael Phelps’ documentary shows that the top athletes experience 

mental health issues due to feeling meaningless when the next generation of athletes follow the same process 

and obtain similar performances compared to these top athletes, who also feel powerless when they leave 

competition and lose all means of financial support. Counsellors are needed to deal with the athletes’ self-worth 

while in competition and with transitional planning for the future. 
 

Keywords: Olympic motto, performance improvement, breaking records, running, jumping, 

swimming, mental health, nutrition, training, equipment, coaching. 
 

1. INTRODUCTION 

Prior to the Tokyo Olympics, originally scheduled for 2020 but held in 2021, on 20 July 2021, the IOC modified 

the Olympic Motto to read “Faster, Higher, Stronger - Together”, IOC (2021). By adding “Together”, the IOC 

pledged that sport should advance by the unified efforts of all to conquer COVID and to further the goals of 

sport in general and the Olympic movement in particular. As the Tokyo 2020/21 Olympics progressed, as is 

usually the case with Olympic Games, world media implied that those who set records exemplified the “Faster, 

Higher, Stronger” manta, while similarly, individuals and nations that gained the most medals exemplified the 

purpose of the Olympics. None of those descriptions actually fit what the Olympic Motto truly means and what 

the Olympics themselves should evoke. 

On 7 March 1891, at an Arcueil College sports assembly in France, Father Henri Didon, a Dominican Priest, 

taught that the students’ goal in sport should be to do their best to improve little by little, that is, to run a bit 

faster, to jump a bit higher and to become a bit stronger than they had been before. He didn’t say anything about 

beating anyone or setting a record. He gave them a Latin motto in sport as in life: Citius, Altius, Fortius, IOC 

(2002).  

His friend, Baron de Coubertin, was present. When de Coubertin founded the modern Olympic movement 

in 1894, he chose Citius, Altius, Fortius as the Olympic Motto. Baron de Coubertin clarified the meaning of the 

Olympic Motto, by creating the Olympic Creed, IOC (2021), based on a talk given at the 1908 Olympics by 

Ethelbert Talbot, Bishop of Pennsylvania. Following Talbot, Coubertin’s Olympic Creed reads "The most 

important thing in the Olympic Games is not to win but to take part, just as the most important thing in life is 

not the triumph but the struggle. The essential thing is not to have conquered but to have fought well.”  

The true essences of sport and the Olympic movement are therefore self-improvement and participation. 

When a young person becomes interested in physical activity, their mindset should therefore be to choose the 

methods of that day and age (that new normal), not thinking about the past or wondering if anyone in the future 

will do better. The vast majority are just having some fun with physical activity. There is a pyramid of methods 

that builds to performance. For coverage of the physics and performance components of the sports in this 

paper, including the ratio of female/male winning velocities, see Stefani (2008) and Stefani (2014). 
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Performance 

Coaching Technique 

Nutrition Training Equipment 

 

The athlete employs the then-available methods of nutrition, training and equipment to create physical power. 

Next, then-available coaching and techniques covert that power to performance in the chosen sport. While the 

young athletes are doing their best to improve, using the methods of their era, sports scientists are working to 

improve nutrition, training, equipment, coaching and technique. Those technical improvements elevate what the 

athlete can achieve. The best of those improving athletes will compete on sports teams, the best of them will be 

on national teams, the best of them will win medals and the best of them will set records, due to the cumulative 

effect of self-improvement. Citius, Altius Fortius (Faster, Higher Stronger) explains how records are set, not 

that records have been set.  

Recently, another important area of sports performance has come to the fore: mental health. Top athletes 

have spoken about mental health, such as tennis player Naomi Osaka, who was chosen by Japan to light the 

Olympic Torch, and Simone Biles, considered to be one of the greatest gymnasts ever. That topic will be covered 

herein. 

The rest of this paper will begin by examining the remarkable improvements in Olympic winning swimming 

velocity, including a comparison of Johnny Weissmuller at 100m in 1924 and Grant Hackett at 1500m in 2004. 

The cumulative improvements for Olympic champion men and women in athletics (running and jumping) and 

in swimming, averaged over all events, will be evaluated, demonstrating application of the true meaning of the 

Olympic Motto. From changes to the rate of improvement, the effectiveness of some technological advances 

will be evaluated. The achievements at the Tokyo Olympics will exemplify how the “new normal” of COVID 

restrictions was accepted and conquered. Finally, mental health issues are covered, based on a documentary 

created by Michael Phelps. 

 

2. IMPROVEMENTS IN OLYMPIC WINNING PERFORMANCES 

LESSONS FROM THE MEN’S WINNING VELOCITIES IN SWIMMING AT 100M AND 1500M  

 

 
Figure 1: Velocity of Male 100m and 1500m Olympic Swimming Champions (1908-2021) 

 

Figure 1 shows the winning velocities for male Olympic champions from 1908 through the 2020/21 Olympics 

at 100m (upper curve) and at 1500m (lower curve). The figure begins with 1908, the first year when swimming 

was held in a pool at metric distances. Prior to 1908, Olympic swimming was held in Piraeus Harbor at Athens 

in 1896, in the Seine River at Paris in 1900 and in a pool with distances in yards at St. Louis in 1904.  

We see the consistent increase in winning velocities. Of particular interest is the competition in 1924. Johnny 

Weissmuller (USA) won at 100m in 59s, becoming the first to win in under 1 minute. That was such a world-

wide phenomenon, it was one reason why Weissmuller was chosen to play Tarzan in the movies. Also in 1924, 

Andrew (Boy) Charlton (Australia) became famous for winning at 1500m in a time of 20:06,5, nearly 2 minutes 

better than the Olympic record of 22:00. Those two performances were so widely publicized and so spectacular, 

how long did it take competitors to accept the new normal of such improved times? As we look at Figure 1, that 
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new normal was accepted immediately. Velocities continued to improve immediately after 1924 at both 

distances until the post WW2 Olympics of 1948, followed by generally increased velocities. 

Now, start with Weissmuller’s 1924 velocity in the upper curve. Move horizontally for 80 years and you hit 

the 1500m curve in 2004. In 2004, Grant Hackett (Australia) won the 1500m with a velocity of 58.9s per 100m. 

That is, Hackett swam 15 times father than Weissmuller with a slightly faster velocity. Hackett’s winning 1500m 

time of 14:43.40 was more than 5 minutes faster than Charlon in 1924. Hackett’s performance would have been 

considered highly impossible in 1924, yet if you compare photos of Weissmuller, Charlton and Hackett, you see 

little difference in physicality. Of course, Hackett embodies improvements in nutrition, training, coaching and 

technique. Suits are similar. The human body has gracefully adapted to each new normal; hence there is strong 

likelihood of continued improvement in the future. 

We now take a comprehensive look at accumulated improvement for men and women, averaged for all 

running, jumping and swimming events. 

  

CUMULATIVE IMPROVEMENTS FOR OLYMPIC CHAMPIONS IN ATHLETICS AND SWIMMING 

To calculate and plot the men’s and women’s cumulative improvements in Figure 2 (running), Figure 3 

(jumping) and Figure 4 (swimming), the percent improvements over each Olympiad for each event in running, 

jumping and swimming were found and then averaged for each Olympics by gender. The average percent 

improvements per Olympiad (%I/O) were then accumulated and plotted. For each figure, over-all average %I/O 

and total cumulative percent improvement are shown by gender. 

 

 
Figure 2: Cumulative % Improvement in Running for Male and Female Olympic Champions (1928-2021) 

 

Figures 1-4 exhibit some changes in slope imposed on the athletes by various international happenings. 

Figures 2-4 begin in 1928 when women first competed in athletics. Although women began competing in 

swimming in 1912, starting with 1928 allows the comparison of men with women in running, jumping and 

swimming over a common time frame. 

From 1928 to 1936, the build-up to WW2 featured rising nationalism resulting in a major focus on 

Olympics and high rate of improvement.  The post WW2 Olympics of 1948 showed some reduced 

performances followed by a rebound in 1952. From 1956-1976 there was a Cold War emphasis on the 

Olympics. The Western Bloc boycotted the 1980 Olympics while the Eastern Bloc boycotted in 1984, with 

effects depending on which gender and bloc had been dominant in a sport. The Olympics of 1988 were 

fully attended, but with significant use of performance-enhancing drugs. From 1992 to the present, anti-

drug efforts have been employed. Women generally improved more the men until the 1970s, as more 

women entered sports and nutrition, training, equipment, coaching and technique equalized compared to 

men until the rate of improvement of women and men equalized after the 1970s. For Figures 1-4, notice 

how athletes accepted those driving forces as each new normal, causing another upward movement of 

achieved performances due to self-improvement.  

The improvements in running as shown in Figure 2 are less than those for jumping and swimming because 

running is dominated by working directly against gravity while jumping and swimming have more techniques 

to work with because the physics and kinesiology are more complex, Stefani (2008, 2014). In running, women 
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achieved an average percent improvement per Olympiad (%I/O) of 0.7%, creating a cumulative improvement 

of 15% while men achieved an average %I/O of 0.5% with a cumulative improvement of 10%. The 5% 

cumulative difference represents the gap women closed from 1928 through the 1970s.  

If photographs are Googled for Elizabeth Robinson (USA) who won the women’s 100m in 1928 and Shelly 

Ann Fraser-Price who was 12% faster while winning in 2008, 80 years later, one sees that the physicality is very 

similar as was true comparing Weissmuller with Hackett. 

 
Figure 3: Cumulative % Improvement in Jumping for Male and Female Olympic Champions (1928-2021) 

 

Figure 3 shows that in jumping, women achieved an average 1.4% %I/O with a cumulative improvement of 

29%, while men achieved an average %I/O of 1.0% with a cumulative improvement of 21%. Those jumping 

values are essentially twice those from running. According to the laws of physics, in jumping, kinetic energy, 

depending on the square of the vertical component of velocity, is converted into potential energy, depending on 

the increase in the height of the centre of gravity. That increased height creates the vertical height or horizontal 

distance achieved by the jumper. If velocity is multiplied by (1 + i) for a small increase i, then the jump should 

increase by the square, (1 + i)2, which is (1 + 2i + i2). Since i is small, i2 can be ignored. The laws of physics 

therefore indicate that an increase of i in velocity should increase the jump by 2i, or twice as much, which is the 

relationship between the improvement parameters in Figures 2 and 3.  

It is instructive to Google photos of Ethel Catherwood (Canada) the 1928 high jump winner and Tia Hellebaut 

(Belgium) who won in 2008 with a 29% higher jump. Catherwood vaulted the bar, while Hellbaut used the much 

more efficient Fosbury Flop. Both athletes have similar physicality. A jumper who vaults the bar must drive the 

centre of gravity well above the bar while with the Fosbury Flop, the centre of gravity only rises to the height of 

the bar of perhaps a bit lower, clearly a more efficient use of energy.  

 
Figure 4: Cumulative % Improvement in Swimming for Male and Female Olympic Champions (1928-2021) 
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In Figure 5, female swimmers achieved an average 1.6 %I/O with a cumulative improvement of 33% while the 

figures for men were 1.4% and 28% respectively. The laws of hydrodynamics and kinesiology provide more 

techniques to exploit for improvement compared to jumping and running, Stefani (2008, 2014). If photographs 

are Googled for Ethel Lackie, the 100m champion in 1924 and Jodie Henry (Australia) who won in 2004, 

swimming 26% faster, again we see little difference in physicality Since there is no visible stress while 

performing so much better than years before, we can be confident of continued improvement. 

 

THE EFFECTIVENESS OF TECHNOLIGIAL ADVANCES  

%I/O can be used to evaluate the relative effectiveness of a technological breakthrough for an event or events in 

a given sport. The second panel of Table 1 shows the average %I/O before application of each of four 

breakthroughs, starting with 1956 when the effects of WW2 had ended. The third panel shows the %I/O for the 

Olympics when the breakthrough was first used.  The fourth panel shows the percent increase in %I/O on first 

use.  

The rowing ergometer, used for training, was by far the most effective, having increased %I/O by 508% on 

first use. International-competition exists just using the rowing ergometer. It is of interest to Google photographs 

of Jack Beresford (Great Britain), the 1924 winner at 2000m single sculls and Olaf Tufte (Norway) the 2004 

winner who was 13% faster. Tufte could train 24/7 in hostile Norwegian winter weather and became Olympic 

champion in a country known for Winter Olympic excellence. Both athletes have similar physiques. The second 

most effective breakthrough is the fibreglass pole (419%) which allows more kinetic energy to become lifting 

potential energy, because the vaulter can run faster before bending the more flexible fibreglass pole. The Fosbury 

Flop (83%) and Clap Skate (58%) are also noteworthy.  

 

Technological Breakthrough  Average %I/0 1956-

Before 

%I/O on First Use 

(Year) 

% Change 

Rowing Ergometer  

(Rowing Training) 

1.22 7.42 (1980) 508 

Fiberglass Pole  

(Pole Vault Equipment) 

1.64 8.51 (1964) 419 

Fosbury Flop  

(High Jump Technique) 

2.25 4.12 

(1968 M, 1972 W) 

  83 

Clap Skate  

(Speed Skating Equipment) 

1.82 2.88 (1998)   58 

       Table 1: Technological Breakthroughs and Their Effectiveness at Improving Performances 

 
3. THE TOKYO OLYMPICS 

One of the greatest challenges to the athlete mindset of accepting the new normal and simply trying to improve 

was the period before the Tokyo 2020/21 Olympics under COVID-induced restrictions.  Training was 

interrupted. Competitions were cancelled. The Tokyo 2020 Olympics was delayed by one year to 2021. To 

further negatively affect the best intentions, there was a very real threat as the athletes left for Tokyo that the 

Games would be cancelled. On one hand, it would have been understandable if the winners at Tokyo performed 

worse that at Rio 2016. On the other hand, is the past history we have seen of the cumulative effect of self-

improvement over a wide range of past international conditions (new normals) imposed on athletes. 

 

 Tokyo 2020/21 vs Rio 
2016  

Rio 2016 vs London 
2012 

London 2012 vs Beijing 
2008 

Swimming 0.29% 0.18%  0.21% 

Athletics 0.65% 0.31% -0.26% 
Table 2: Olympic Champion Percent I/O for Swimming and Athletics for Each of the Last Three Olympics 

 

According to Table 2, the athletes met the challenge, Stefani (2021). Swimming winners performed an 

average of 0.29% better at Tokyo than at Rio 2016. Athletics winners, in athletics events held on the track, 

performed 0.65% better than at Rio 2016. Not only did the swimming and athletics winners do better than at 

Rio, both of those improvements were more than achieved under normal conditions by the Rio 2016 winners 

compared to London 2012 and more than achieved by the London winners in 2012 compared to Beijing 2008. 

74



The Olympic motto for the winners at Tokyo 2020/21 should be Faster, Higher, Stronger-Truly 

Inspirational. I suggest the score at Tokyo was Athletes 1-COVID 0. 

 

4. THE MENTAL HEALTH OF TOP ATHLETES 

Recently, mental health degradation among top athletes has been widely discussed when tennis player Naomi 

Osaka withdrew from some competitions, citing mental health issues, while being so widely respected that she 

was chosen to light the Olympic Torch for Japan. The American gymnast Simone Biles withdrew from some 

events at the Tokyo 2020/21 Games, citing mental health issues. 

Michael Phelps, having openly discussed his own mental health issues, produced an in-depth documentary 

called The Weight of Gold, Phelps (2020). Besides Phelps’ participation, the following 11 highly successful 

athletes took part.  

 

Jeremy Bloom, Alpine Skier Steven Holcomb, Bobsled  Jeret Peterson, Alpine Skier 

David Bodia, Diver  Lolo Jones, Hurdler and Bobsled Katie Uhlaender, Skeleton Sled 

Sasha Cohen, Figure Skater  Bode Miller, Alpine Skier  Shaun White, Snowboard 

Gracie Gold, Figure Skater  Apolo Ohno, Short Track Skater 

 

Each one of them shared a common experience in the documentary. They each said that when newly-emerging 

athletes began to perform about as well as they had, each experienced loss of self-worth, leading to depression. 

Ironically, they did not conceptualize that these new athletes were just part of the same continuity of sport by 

which these superstars had themselves become established. For example, Michel Phelps has earned 28 Olympic 

medals, 23 of which are gold. The second most gold medal earner has won 9, yet Phelps said he never felt 

accomplished. 

A number of them said that when their sports careers ended, so did the stipends by which they had lived 

while competing. They said they felt lost without having acquired another profession,  

In addition to the nutritionists, trainers, equipment procurers, coaches, technical analysis and sports 

psychologists, all of whom work to help the athletes perform at their best, counsellors are needed to deal with 

the athletes’ self-worth while in competition and with transitional planning for the future.  

.  

5. CONCLUSIONS 

It is the mindset of young athletes living the real meaning of Citius, Altius, Fortius to try to improve, each using 

the methods of their day (their new normal) each aided by similarly-minded nutritionists, trainers, coaches, 

analysts and equipment makers. Winning performances keep getting better, simply due to the effects of that self-

improvement, across the spectrum of competition from the lowest to very highest at the Olympics. As 

improvements accumulate over time, winning performances occur that would have been considered super-

human in the past. Mental health issues are of concern. Counsellors are needed to deal with the athletes’ self-

worth while in competition and with transitional planning for the future. 
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Abstract 
 

The shafts of most traditional polo mallets are made from the climbing stems of the rattan palm plant. This plant 

is in serious decline due to previous decades of neglect, habitat loss and exploitation for furniture. Some attempts 

have been made recently to replace the shaft of the traditional wooden mallet with human constructed materials. 

However, elite players comment that these modern mallets lack the “playability” and “feel” of the traditional 

mallets. Moreover, there is concern that use of modern composite materials could lead to more injury amongst 

the players’ horses as they are sometimes struck on the stroke wind-up or follow-through. In this research, we 

make an initial enquiry into the vibrational characteristics of the traditional mallet shaft. This is done by 

modelling the shaft as a cantilevered visco-elastic beam and then representing this as a spring-damper-mass 

system. The oscillation frequency and decay parameters of this simplified system are compared with 

experimental data and this allows determination of the visco-elastic constant of the shaft without the mallet head. 

Good agreement with experimental data for oscillation frequency and decay is obtained when heads of different 

masses are then fixed to the same shaft. It is hoped that a sound theoretical understanding of the shaft’s 

mechanical properties which determine its vibrational characteristics will lead to improved design of artificial 

shafts. This should also result in better player acceptance of these shafts and improved animal welfare.    

 

Keywords: Polo mallet, vibrational analysis, visco-elastic beam model 
 

1. INTRODUCTION 

The gold standard for field polo mallets is fabricated from a combination of materials. The choice of material 

for: the head of the mallet is tipa, a south American hard wood; the shaft is manau cane, a genus of the rattan 

palm, and the handle, which is a shaped wood laminate, bound with a cloth backed rubber compound (Woods, 

n.d.). 

Dwindling supply of ‘quality’ manau cane and the high variability of the root stock used for mallet shafts in 

general has seen the quality and availability of gold standard mallets decline. This had led makers to consider 

the use of other materials for the mallet shaft, including other species of cane which are considered inferior due 

to inconsistent performance required for high level match play (Woods, G. personal communication, July 21, 

2021). 

One approach to ensure that both the level of performance and the consistency of product is met is using 

engineered fibre composite materials. As with many sports, over the last 30 - 40 years, use of composite materials 

has proven to be well received, especially with the savings in weight corresponding to improvements in athlete 

performance (Easterling, 1993), (Jenkins, 2003). While this approach has worked for many sports there are 

aspects of engineered materials that may negatively affect their adoption. This includes player perception or 

“feel” of the equipment in use, which is a subjective consideration that is not easily quantified, as what 

constitutes good “feel” can differ from one player to the next (Steele, Jones, Leaney, 2007), (Curtis, Heller, 

Senior. 2021). Objective considerations include vibrational characteristics, strength, stiffness, impact response 

and general material properties (Jones, Betzler, Wallace, Otto, 2019). While the objective considerations can be 

readily assessed what we cannot currently determine is how these material properties combine to produce the 

response or feel desired by the player. 

Another aspect which is not easily determined and unique to field polo relates to the complex interactions seen 

within the sport. For most sports activities where a ball (ball, puck, shuttle) is struck with a bat (bat, mallet, club, 

racket) the bat may contact the ball or the ground. With polo there is the added interaction of the horse and 

proximity of the opposing team and hence the bat may contact the ball, the ground, the horse, or an opposing 

player. 

While it is theoretically possible that composite materials can be engineered to produce superior player-ball 

interactions, consideration also needs to be given for the horse and player interactions. This consideration, for 
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the other interactions, is necessary to ensure that any equipment developed does not produce unsafe conditions 

for the horse or an opposing player (Federation of international polo, 2018). 

The gold standard polo mallets have been accepted for many years as they are universally considered to be safe 

for both horses and players under the current rules of the sport (Federation of international polo, 2018). Research 

is also underway to determine criteria that will ensure any future materials developed be as physically safe and 

perform comparably, if not better, than the gold standard during match play. 

This paper presents an investigation that sees testing of the gold standard mallet to collect vibrational response 

data. These material properties will then be used to empirically validate the mathematical model produced to 

predict the dynamic response based on a cantilevered visco-elastic beam. 

 

2. METHODS 

Experimental set-up 

A gold standard mallet (George Wood, Wood Mallets, Hawkes Bay, New Zealand) was clamped by the handle 

and then a load progressively applied, using the Lloyd LR30 universal tester, at a rate of 500 mm/min until the 

vertical displacement was 200 mm. The load was then released, and the dynamic response of the shaft 

measured by a three-axis accelerometer (AX3, 3-Axis Logging Accelerometer. Axivity Ltd, UK). The x-axis is 

taken along the shaft (positive direction away from the handle), the y-axis perpendicular to the shaft (in the 

horizontal plane) and the z-axis in the vertical direction (positive direction upwards). The sampling rate of the 

accelerometer was 100 Hz and the measurable range ± 16 g, where g is the gravitational acceleration constant 

9.81 m/s2. The test was repeated 5 times after each loading once the shaft had come to rest. 

 

 
 

Figure 1: The mallet shaft before (top) and during loading (bottom) 
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The Fundamental Model 

We modelled the mallet shaft as a cantilevered visco-elastic beam (Gürgöze, Doğruoğlu & Zeren, 2007) with 

the assumption that its visco-elastic properties fit the Kelvin-Voigt model (Perkins & Lach, 2011). The 

bending rigidity, length, mass per unit length and visco-elastic constant of the beam material are 

𝐸𝐼, 𝐿, 𝑚 and 𝛼 respectively.  

 

 

 
Figure 2: Fundamental model of the polo mallet (in the experimental set-up we removed the head so M = 0) 

 

The equation of motion for this clamped visco-elastic beam can be obtained from the literature (Banks & 

Inman, 1991).  

𝐸𝐼𝑤IV(𝑥, 𝑡) + 𝛼𝐼𝑤IV∙(𝑥, 𝑡) + 𝑚𝑤̈(𝑥, 𝑡) = 0  
 

where 𝐼 is the moment of inertia of the beam section, 𝑤(𝑥, 𝑡) represents the lateral displacement of the beam 

at the location 𝑥 and time 𝑡, and primes and dots denote partial derivatives with respect to 𝑥 and 𝑡. 

Of the four parameters involved in the governing equation of motion, the visco-elastic constant 𝛼 is most 

difficult to measure directly, so in this paper we use the data obtained from the experiment to “tune” this value. 

Then we can predict the dynamic response of the mallet when heads of different masses are added to compare 

with future experimental data. However, rather than numerically solving this complicated partial differential 

equation, an alternative approach which involves representing the fundamental model by an “equivalent” 

simplified model is now described.  

 

The Simplified “Equivalent” Model 

Gürgöze (2005) has shown that it is possible to represent the vibrational system in Fig. 2 by an “equivalent” 

simplified spring-damper-mass system as shown in Fig. 3. In the simplified system the value of the spring 

constant and damping coefficient must be taken as 

 

𝑘 =
3𝐸𝐼

𝐿3
  and  𝑐 =

3𝛼𝐼

𝐿3
                                                  (1) 

 

respectively. The parameter 𝛿 is the ratio of the beam mass (𝑚𝐿) to be added to the head mass (𝑀) and is 

determined by “matching” the first eigenvalue of the system represented in Figure 2 with the eigenvalue 

obtained from the equivalent system in Figure 3. Further details on this “matching” procedure can be found in 

Gürgöze, Doğruoğlu & Zeren, 2007. 

 
Figure 3: Equivalent spring-mass-damper system that represents the model in Figure 2 
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3. RESULTS 

Experimental Data 

In Figure 4 we plot the vertical (z-axis) acceleration in terms of 𝑔 over one run. Note that the oscillation of the 

shaft continues for about 12 seconds and the peak values for acceleration exceed the range of the sensors 

(±16 𝑔) at the start of the run. As expected, because of internal dampening in the shaft, the amplitude of the 

oscillation decays until a final value of −𝑔 (representing downward acceleration due to gravity) is reached. 

 

 
Figure 4: Vertical acceleration of the shaft tip after the load is removed 

 

In Figure 5 we focus on the first second of the oscillations for the second run. These show some discrepancies 

in the acceleration values between sampling points in the initial period. For example, there is a decrease in 

acceleration from 15.8 g to 12.6 g between times 15.63 s and 15.64 s but this increases again to 15.85 g at the 

next sampling point of 15.65 s. This indicates that the sampling rate of 100 Hz, or the range of the sensor, may 

be insufficient to accurately calculate the acceleration. However, as time progresses these unexpected 

fluctuations appear to be resolved as seen from the smoother peaks and troughs from 𝑡 = 16.2 s onwards. 

 

 
Figure 5: Vertical acceleration of the shaft tip in the second run after the load is removed 
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Analysis of simplified “equivalent” model   

To proceed with analysis of the model in Figure 3 we need estimates of the parameters 𝑘, 𝑐 and 𝑚𝐿. As 

mentioned previously, the visco-elastic constant 𝛼 is very difficult to measure directly, so in this analysis we 

tune the parameter 𝑐 (which depends on 𝛼) so that results from this simplified model match the experimental 

data. We take values for the shaft of  

𝐿 = 1.1 m, 𝐼 = 7.85 × 10−9m4, 𝐸 = 4.4 × 109 Pa, and 𝑚𝐿 (shaft mass) = 0.2 kg.  
The value for moment of inertia 𝐼 assumes the shaft is of uniform circular cross-section with radius 𝑟 =
0.01 m and the Young’s modulus value for 𝐸 assumes it is made of rattan cane (Du & Wang, 2016). These 

values used in equation (1) give 𝑘 = 78 Nm−1 and 𝑐 = 1.77 × 10−8𝛼 Nsm−1. The value for 𝛿 is obtained 

from equation (20) in Gürgöze, Doğruoğlu, & Zeren, (2007) which evaluates as 0.243. The simplified model 

to be solved is then 

 

 (0.243)(0.2)𝑤̈ + 1.77 × 10−8𝛼 𝑤̇ + 78𝑤 = 0                                                                 (2)  

 

or, on dividing through by the coefficient of the second derivative (0.0486), 

 

𝑤̈ + 3.64 × 10−7𝛼 𝑤̇ + 1 605𝑤 = 0                                                                    (3) 

  

with the value of the visco-elastic constant 𝛼 to be chosen so that solutions match the experimental data. We 

are using 𝑤 here to represent the lateral displacement of the shaft so the initial conditions for the simplified 

model should be 𝑤(0) = −0.2 m and 𝑤̇(0) = 0. However, as noted in the experimental data, the early values 

for the acceleration (and hence displacement) should be treated with caution because of the insufficient 

sampling rate, so we focus mainly on matching the period and decay rate of the vibrations rather than exact 

time correspondence. Solutions of equation (3) will be damped sinusoidal curves with period 
2𝜋

𝐵
 (Bronson, 

1973) where  

                                             𝐵 =
√4(1 605)−(3.64×10−7𝛼)2

2
                                                                     (4) 

 

and damping factor 𝑒−𝐴𝑡where 𝐴 =
3.64×10−7𝛼

2
. From Figure 5 the period of the oscillations is approximately 

0.16 s hence 𝐵 ≈
2𝜋

0.16
= 39.3. Solving equation (4) for the visco-elastic constant gives a value of 𝛼 =

4.27 × 107 and a value of 𝐴 = 15.6. Hence over each period of the oscillation, the model predicts that the 

peak value will decrease by a factor of 𝑒−15.6(0.16) ≈ 0.08. This decline in the peak values is clearly too rapid 

so this indicates that this estimate of 𝛼 is incorrect. If instead we choose a value for 𝛼 = 3 × 106 then the 

values for 𝐴 and 𝐵 are 0.56 and 40 respectively, leading to a period of 0.157 s and damping factor (over one 

period) of 𝑒−0.56(0.157) ≈ 0.92. This is clearly in much closer agreement with the data as shown in Figure 6, 

which shows the second derivative of 𝑤 (acceleration, in units of 𝑔) with time. 

 

 
Figure 6: Results from analysis of the simplified “equivalent” model in equation (3) 
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For comparison purposes with the data, we also plot the model solution from 𝑡 = 3 to 5 s. This clearly shows 

the period and damping rate with these parameter values is consistent with the data. 

 

 
Figure 7: Close-up of simplified model solution from t=3 to 5 s showing good agreement with period and 

damping factor of the data. 

 

 

4. DISCUSSION 

Replacing the fundamental model of the mallet shaft with the simplified “equivalent” model allows more 

comprehensive understanding of the role that the material properties play in the resulting vibrations. Equation 

(4) shows that the impact of the visco-elastic constant is much greater on the damping factor than the period of 

vibrations. For example, a ten-fold decrease in 𝛼 leads to only 1.5% decline in the period but an approximate 

ten-fold increase in the damping factor. The simplified model will also allow similar sensitivity analyses of the 

other material parameters 𝐸, 𝐼, 𝑚 (mass per unit length) and 𝛼. This is useful as the values of these parameters 

would vary quite widely because of natural variability in the rattan cane used in the shaft. Knowing how the 

vibrational response of the shaft depends on the parameters will also lead to more efficient choice of new 

composite materials, whose parameter values can then be chosen to provide the appropriate behaviour. 

 

As a further example of the use of the simplified model, we examine the effect of including the mallet head, 

which we take to be twice the mass of the shaft (so 𝑀 = 0.4 kg in Fig. 3). Using Table 1 and Equation (20) from 

Gürgöze, Doğruoğlu, & Zeren, (2007) the new value of 𝛿 = 0.236 and fixing all other parameter values as 

before, equation (2) now becomes  

 

                                                      [(0.236)(0.2) + 0.4]𝑤̈ + 0.053 𝑤̇ + 78𝑤 = 0                                               (5) 

 

The acceleration from solving (5) subject to 𝑤(0) = −0.2,  𝑤̇(0) = 0 is shown in Figure 8 from 𝑡 = 0 to 10 s. 
In this case, the period has increased to 0.48 s and the damping factor over each period is reduced to 

𝑒−0.0593(0.48) ≈ 0.97 which means the vibrations will persist for much longer. 
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Figure 8: Effect of adding a head mass of 𝑀 = 0.4 kg to the previous shaft 

 

Whilst analysis of the vibrational characteristics of the polo mallet is important, it is only a first step in the 

classification and design of future mallets which might be made from composite materials. Also requiring 

study are the impact and reaction forces when striking the ball, which are very different from the quasi-static 

loading and clamped handle considered in this paper.    

 

 

5. CONCLUSIONS 

By using a simplified model of a visco-elastic beam available in the literature, we can determine the vibrational 

response of a polo mallet shaft with variable material parameters (Young’s modulus, moment of inertia, mass 

per unit length and visco-elastic constant). We found that the visco-elastic constant has little effect on the period 

of vibration but greatly affects the damping factor. We can also easily predict the response when heads of 

different masses are attached to the shaft. Preliminary results show the period will increase and damping factor 

will decrease with increasing head mass. This study should lead to more informed consideration of alternative 

future materials for constructing polo mallets, given the increasing scarcity of traditional materials. Similar 

modelling approaches will hopefully also be useful when considering striking the ball with the mallet.  
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Abstract 
 

“The demography of New Zealand is changing, with major implications for rugby, especially for player 

participation (Spoonley, 2021).”  To understand the implications, the challenge for sports administrators is to 

first quantify overarching demographic trends and then overlay and isolate the impacts this has on the 

participating population.  Dissanayake et. al. (2020) found that socio-economic factors played a role in junior 

players leaving rugby in Auckland. 

     In this paper, this concept of demographic change in New Zealand and the subsequent impact on junior 

participation is extended further to utilise Explainable Artificial Intelligence (xAI).  The impacts of socio-

economic changes within the Wellington Region and the impact this has on junior rugby at a team level are 

explored. 

     The basis of the xAI in this instance is to meaningfully group and adapt to the latent structures for those 

groupings based on socio-economic attributes.  Constrained spectral clustering is used to group and explain 

similar small areas based on attributes such as deprivation, educational attainment, civic compliance and 

discretionary spend. Given the dynamic nature of the underlying data sources, this segmentation is updated 

regularly.  This enables socio-economic change to be identified in a meaningfully relevant timeframe.   

     To explore the contemporaneous relationship with player participation, an inverse Huff model (Ward et. al., 

2020) is used to distribute players in the vicinity of each club.  Exploring the change in playing numbers over a 

two-year period, clubs in neighbourhoods which improved socio-economically also grew in playing numbers. 

     These findings have important implications for growing the game in New Zealand and can be used to help 

identify, not only new pools of junior players, but also sponsorship and advertising opportunities. 
 

Keywords: Spectral Clustering, Churn 
 

1. INTRODUCTION 

Physical activity has many benefits for children, including improved academic performance, better cognition, 

elevated mood, and increased self-esteem (Rasmussen and Laumann, 2013). Junior sport plays a large part in 

creating an active and healthy lifestyle for children in New Zealand. According to Ministry of Health (2021), to 

maintain a healthy lifestyle, children should complete ”1 hour of moderate or vigorous physical activity spread 

over each day”. Participation in junior sport allows for this recommendation to be more routinely met.  

In a survey done by Sport NZ (2019), it was found that only 58% of young people met the current 

recommended level of exercise. Of the young people who were under the recommended level of exercise, a large 

number did not lack the motivation to exercise, meaning there are other factors at play. The survey revealed that 

gender and deprivation impacted the likelihood of a young person being in this position. 

Rugby has been a popular sport in New Zealand for many years, but in recent times, the number of junior 

players leaving the sport has increased (Dissanayake et al., 2020). Before making policy decisions in the hope 

of altering the current trend, it is important to understand what is driving this movement away from the sport. 

Junior rugby in Wellington ranges from under 5 through to under 13 grades. It transitions from Rippa rugby 

in the younger grades to large team format tackle rugby in older grades. The players can enter 1 of 20 clubs 

across the Wellington region, giving options for a range of geographic locations.  

Factors other than a child’s interest in sport contributes to whether used to calthey can participate. There are 

many factors that can influence the participation of children in sport, including deprivation, support, accessibility 

and parental sports preference (Sport NZ, 2019; Taks and Scheerder, 2006). When specifically looking at rugby 

it was found that weight limits (grades with a maximum player weight), team size, rugby sentiment portrayed 

by the media, and deprivation all play a role is influencing participation (Dissanayake et al., 2020). 

A study in Germany by Steinmayr et al. (2011) investigated the relationship between youth participation in 

sport, and their distance from sports clubs. It showed that up to a certain point, distance did not affect the rate of 

participation, and beyond that point, participation fell at a linear rate. Clubs that offered different types of 

facilities differed from each other, among clubs that had a sports ground, participation was constant at about 

50% until 2Km, after which it fell linearly to about 40% at 6Km. 

DOT’s Dynamic Deprivation Index (DDI) and Unique Segmentation (Us) tool reflect changes in the 

communities throughout New Zealand (NZ). The DDI is an extension of the Socio-economic Deprivation 
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Indexes (NZDep) by Otago University, a detailed and resource intensive study into NZ deprivation (Ward et al., 

2019). The DDI offers deprivation data at a much higher temporal granularity than NZDEP, but at the expense 

of the detail in the deprivation estimates. Us looks to split NZ into 16 unique segments, based on approximately 

200 variables.  These 200 variables for both clustering and descriptive purposes.  The variables include attributes 

such as deprivation, urbanality, electricity consumption and spending habits.  
Building on an implementation of the Huff model by Ward et al. (2019), the study aims to propose a method 

of estimating the spatial distribution of junior rugby players given the number of players at each rugby club. As 

part of this method, a distance score function is presented as an option to implement user defined distance-

participation relationships. While the player estimations cannot be verified at this stage, it is thought that the 

framework can be calibrated in future studies.  

Using the junior rugby player estimates, the study aims to compare the DDI and Us segments as predictors 

of participation. Participation is measured by modelling the expected number of players in an area after adjusting 

for the junior population (rate of participation). The study also aims to identify trends in junior rugby 

participation over space and time after adjusting for changes in other variables.  

 

2. JUNIOR PARTICIPATION DATA 

Data on the number of juniors participating at each club were collected from 2019 to 2021 via publicly available 

draws (see: https://www.wrfu.co.nz/junior/draws/).   The address for each club is known.  The study used SA1 

and SA2 polygon data, originally downloaded from Land Information NZ (LINZ).  This was downloaded in the 

New Zealand Transverse Mercator (NZTM) projection and contained the respective area code for each polygon. 

To find the distances between each SA2 and rugby club, network distances between SA1 pairs were used. When 

calculating these distances, the central point of reference for each SA1 was the average of the contained 

meshblock centroids. The average SA1 network distance within each SA2 was then calculated to fit with the 

project data. 

Rugby club points were created by using DOT’s proprietary geocoder. The given World Geodetic System 

(WGS84) latitude and longitude coordinates were used to create the rugby club points, which were then projected 

to NZTM. The points were intersected with the SA1 and SA2 polygons to tag each club with the underlying area 

code. The network distances could then be joined to the club points, giving the distance between a given club 

and SA2. When estimating the player count per club, it was important to have the counts split out by grade. Not 

only because the team size varies depending on grade, but also the distribution of number of teams per grade 

varies across different clubs. To find an estimate of player numbers, club team counts were multiplied by the 

team size for the given grades. Up to the end of the 2021 season, WRFU grades were based on the age of the 

participant as of 1st January.  Under 7 (years of age) grades and below have 7 players. Grades up to Under 11 

have 10 aside.  Finally, the Under 12 & 13 grades play with 15 per team. A flat 3 substitute players were added 

to each of these numbers.   

Annual population estimates for 0-14 year-olds at a SA2 level were obtained from Stats NZ. To convert 

these figures to a junior rugby age range (5 to 13), the counts were multiplied by 9/14 (0.64).  The SA2 junior 

player count estimates were calculated by multiplying P(Area = i|Club = j) by the Nj, the number of players at 

club j. 

 

2. DATA PREPARATION WITH THE INVERSE HUFF MODEL 

To explore the contemporaneous relationship with player participation, an inverse Huff model (Ward et. al., 

2020) is used to distribute players in the vicinity of each club.  The steps in construction of this model for junior 

rugby participation are outlined at follows. 

 

ATTRACTIVENESS 

The junior population at each SA2 was used as the attractiveness parameter, Ai. This specification ensures that 

players are distributed to SA2 proportional to their population. 

 

DISTANCE 

Steinmayr et. al. (2011) observed that distance is not a factor in participation rates up until a certain point 

(threshold distance), after which, participation falls linearly. A distance score function, Dscore was created to 

emulate this relationship. There are 2 parts to the function: (1) convert each distance, d, to its equivalent 

participation rate (%) in Steinmayr et. al. (2011), (2) convert each participation rate to a distance score (so that 

a lower participation rate corresponds to a higher distance). Dscore assumes a constant (flat) rate of participation 

until a threshold point, Tdist, whereafter, participation falls at a linear rate until a maximum distance Mdist. Based 

on the Steinmayr et. al. (2011) findings of clubs with sports grounds, the following assumptions were made: (1) 
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New Zealand and German youth exhibit similar behaviours around sport participation and distance from clubs, 

(2) the participation rate is a constant 50% until 2 Km, (3) after 2 Km, participation falls linearly to 40% at 6 

Km.  

  

 

(1) 
 

 

Where: 

d = distance to club 

Dscore = Distance score 

Tdist = Threshold distance (2 Km) 

Trate = Estimated participation rate (%) up till threshold (50%) 

Mdist = Maximum distance included (6 Km) 

Mrate = Estimated participation rate (%) at maximum distance (40%) 

While the parameters defined in Dscore are a good starting point, they rely on several assumptions and are likely 

to differ in practice. To show how sensitive Dscore is to changes in parameters, Dscore was run over a grid of 

parameters, and Huff models were run for each iteration. Knowing that sport participation tends to vary with 

deprivation level (Dissanayake et. al., 2020; Sport NZ, 2019), the correlation between the raw deprivation score, 

used to derive the DDI, and participation rate (as predicted by the inverse Huff model) were calculated. Mdist has 

a significant impact on the correlation, R2 ≈ −0.22 around 5-6 Km compared to R2 ≈ −0.05 at 8 Km. Trate and 

Mrate had a relatively small but noticeable effect, while Tdist had very little impact 

 

WEIGHTING EXPONENTS 

An attractiveness exponent α = 1 was used under the assumption that the population of an area does not change 

the rate at which juniors participate in sport. To retain the relationship created using the distance score function, 

Dscore, the distance exponent was set to β = 1. 

 

3. DIMENSION REDUCTION USING XAI 

Explainable AI (xAI) is artificial intelligence (AI) in which the results of the solution can be understood by 

humans. To ensure humans can understand what the AI is trying to do, the outputs must be transparent, robust, 

meaningful and connect to the real world.  This builds trust.  Consequently, an approach is outlined that 

dynamically adapts to latent data changes yet remains interpretable by design. 

 

DATA PREPARATION 

Here, the approach used to develop the proprietary Unique Segmentation tool (Us) is outlined 

(https://dotlovesdata.com/products/us/).   

The purpose of the segmentation in Us involves using a variety of datasets to describe different areas of 

New Zealand (at an SA1 level) and cluster them into several distinct groups that can be used to represent the 

diverse population of New Zealand in a way that is more targetable and actionable. This required the creation of 

a clustering model that would take all data and cluster in a dynamic way such that the resulting clusters would 

be truly representative of different communities, and their evolution, across the country. 

The first major step involved collecting the enormous amount of data necessary for such a task. Many 

datasets were used, including deprivation metrics such as education, income, and housing; urbanality metrics 

such as proximity to urban areas and density; electoral metrics such as voter turnout, party votes, and referendum 

votes; spending metrics such as electricity and luxury goods; and a variety of data pulled from the New Zealand 

Census of Population and Dwellings (see: https://www.stats.govt.nz/topics/census). 

Importantly, because each dataset is organised differently, they are adjusted to represent average values for 

individual SA1s. The importance of aggregating datasets to this level is so that the clustering is not based on 

individually identifiable data, but rather represents the small but sufficiently distinct general area. The SA1, or 

Statistical Area 1 scheme, was introduced by Statistics New Zealand as part of the Statistical Standard for 

Geographic Areas 2018 (SSGA18) (StatsNZ, 2017). SA1 is intended to allow the release of more detailed 

information about demographic characteristics than can be made available at the smaller meshblock level. 

Constructed from combinations of meshblocks, SA1s generally have a population range of around 100 to 200 

people, and at most approximately 500 people. 

Once the data has been aggregated to the SA1 level, the resulting dataset has around 200 columns. Each 

column represents a distinct feature, so it is then necessary to reduce the dimensionality of the dataset before 
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clustering. First, variables such as those related to cultural and ethnic groups must be omitted from the clustering 

dataset to avoid racial bias and potential racial targeting from the segments. If there exist differences in lifestyle 

and behaviour between different cultural groups, these will naturally show up throughout the other variables in 

the dataset, however it is important not to artificially introduce biases such as these into the model. After such 

variables have been omitted, the dataset is still very large, so further dimensionality reduction is applied using 

principal component analysis (PCA). With the size of the dataset in the initial version of Us, PCA can explain 

approximately 70% of the variation in the dataset using eight principal components, thereafter additional 

principal components explain less than 30% of the variance within the dataset. With the dataset transformed to 

these principal components, it is then ready to be clustered. 

 

CLUSTERING DATA 

A key challenge is constraining the number of clusters, as having two few or too many will result in clusters that 

are either too general or too specific, as well as constrain the size of the clusters such that each represents roughly 

equivalent proportions of the overall population.  This attribute is often required for geo-targeting in market 

applications.  Consequently, size constrained clustering methods are investigated. 

Raykov, Boukouvalas, Baig, & Little (2016) discuss that the k-means algorithm is one of the most 

commonly used clustering algorithms in current use, due to its simplicity. However, this simplicity entails certain 

restrictive assumptions about the data, the negative consequences of which are not always immediately apparent. 

Zelnik-Manor & Perona (2004) also note the benefits and shortcomings of common clustering methods such as 

k-means, explaining that these methods typically estimate explicit models and return high quality results when 

the data is organised according to the assumed models. They caution that when data is arranged in more complex 

and unknown shapes, these models can fall short. Höppner & Klawonn (2008) additionally note that k-means 

generally tends towards clusters of approximately equal size, but only when the data density is uniform, again 

echoing that same sentiment in that it works well with the optimal dataset. But datasets can very often be less 

than optimal, and Höppner & Klawonn explain that clusters can become very imbalanced in their coverage of 

the data points, in these instances. 

Zelnik-Manor & Perona (2004)’s recommendation in such instances is spectral clustering, which, rather 

than estimating explicit models of the data distribution, can perform a spectral analysis of point-to-point 

similarities within the data matrix. Li, Wang, Xu, & Yang (2018) also hold spectral clustering in high regard, 

regarding it as the most effective clustering algorithm due to its ability to deal with non-convex sample space 

distribution problems.   

 
 

Figure 1. Results of clustering on dummy datasets. The first row shows the results of k-means clustering, 

while the second row shows the results of spectral clustering. 
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As demonstrated in Figure 1, spectral clustering is capable of clustering datasets that consist of more 

complex shapes, where traditional k-means falls short. 

Li, Wang, Xu, & Yang (2018) discuss further how spectral clustering could be adapted into a constrained 

model. They explain that spectral clustering being an unsupervised learning method means that compared with 

the supervised learning it lacks the information of class labels, but that pairwise constraints can, in some cases, 

be obtained and encoded into the spectral clustering to get better results. With this, we can put together the 

Constrained Spectral Clustering algorithm: 

Input. Dataset 𝑋={𝑥1,...,𝑥n}, number of clusters 𝐶, pairwise constraints 

Output. The 𝑐 clusters of dataset 𝑋 

 
 

CHOOSING K 

Zelnik-Manor & Perona (2004) mention that when choosing the number of clusters, that the process is usually 

manual, and that there has been limited research as to how one might determine this automatically. They discuss 

analysing the eigenvalues of the affinity matrix as an intuitive solution to finding an optimal number of clusters 

but propose an alternative method: using the initial constrained spectral clustering algorithm with a defined 

maximum number of clusters 𝐶, and grading the cost of the alignment for each group number up to 𝐶, treating 

the largest group number with minimal alignment cost to be the optimal number of clusters. They define a cost 

function:  

 
(2) 

 

and Let Z∈ℝ𝑛×𝐶 is the matrix obtained after rotating the eigenvector matrix G. 

Adding this into our algorithm above, starting from step 6: 

 

88



In testing, C=16 seemed to provide optimal results. This result was further checked against each model’s 

distortion, as well as its Bayesian information criterion (BIC) (Schwarz, 1978), a criterion for model selection 

among a finite set of models. The BIC is formally defined as: BIC=k(n)-2(L), such that L=p(x|θ,M) (the 

maximized value of the likelihood function of the model M), x is the observed data, n is the number of data 

points in x, and k is the number of parameters estimated by the model. 

C=16 minimises BIC and distortion without being far beyond the point of diminishing returns.  However, 

while this may well change in updates to the clustering as the input dataset evolves, the results indicate that this 

is a suitable number of clusters for our model in this version.  

 

 
Figure 2: Overview of the DOT Us segments arranged by deprivation and urbanality. 

 

4. METHOD 

A Generalised Estimating Equation (GEE) with a Poisson link function was used to model the number of junior 

rugby players in each SA1. To account for varying SA1 populations, the estimated junior SA1 population was 

used as an offset term in the model. The SA1 code was used as the ID of each cluster in the model, while ‘Year” 

identified the order of the repeated observations in each cluster. 

Given that there are 16 clusters in the data set, it is important to be mindful of the number of parameters in 

each model. 3 groups of models were fitted, each corresponding to three core predictors: deprivation score (DS), 

DDI, or Us segment. Theses variables were not used in the same model due to the level of correlation they have 

with each other as DS is used to create DDI which in turn is a core component in Us. 

Variables used for predicting the number of junior rugby players in each SA1 were: 

DS: Deprivation score used to derive the DDI 

DDI: Levels 1 to 10 from the DDI, with ”10” used as reference level (most deprived) 

Us: 16 Us letter codes segment “M” from 2021 used as reference level (most central segment 

given urbanality and deprivation) 

Min Dist: The distance to the nearest club (Km) 

TA: The Territorial Authority, Wellington City used as the reference level 

Year: Year of the rugby season 

Within each of the 3 groups, 4 models were fitted for a total of 12 models (13 including the null model). 

Modelling was carried out using the R package ‘geepack’ by Halekoh and Højsgaard (2006). Within the 

‘geeglm’ function, ‘SA1 Code’ was used as the ID variable to identify repeated measures, while ‘Year’ was used 

to identify the order of the repeated measures. In each model, ‘log(Junior pop)’ is present as the offset term, 

accounting for the varying junior populations within each SA2. Models 1 to 4 were fitted for each core predictor 
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(DS, DDI, and Us). These models are later referred to as Model-0, Model-DS1, Model-DS2, ..., Model-US3 and 

Model-US4: 

Model 0: log(N Players) = log(Junior Pop) 

Model 1: log(N Players) = log(Junior Pop) + Core Predictor 

Model 2: log(N Players) = log(Junior Pop) + Core Predictor + Min Dist 

Model 3: log(N Players) = log(Junior Pop) + Core Predictor + Min Dist 

Model 4: log(N Players) = log(Junior Pop) + Core Predictor + Min Dist + TA + Year 

A first-order autoregressive, AR(1), correlation structure was specified, as consecutive observations were 

generally more similar than observations that were 2 years apart.  

Using ‘geepack‘, the quasi-likelihood under the independence model information criterion (QIC) was 

calculated to compare the performance of each model (Pan, 2001). For the sake of comparison between the core 

predictors, one DS/DDI model and one Us model were selected for evaluation. 

When using GEEs, the standard observed versus predicted residuals can be used, but the variance is a 

function of the mean response (link function) (Fitzmaurice et al., 2011). To avoid this and make comparison 

easier, the Pearson residuals can be used. 

 

5. RESULTS 

Table 3 is a summary of Model-DI3 and Model-US3, showing estimates, rate ratios (RR) and the corresponding 

95% confidence intervals (CI).  

 
 

Table 1: Model summaries showing parameter estimates and significance from Model-DI3 and Model-US3 
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Not all parameters were significant at a 95% significance level but were included due to the reduction QICC that 

they provided and assistance in interpretability. Model-DDI3 shows that DDI levels 1 to 8 are significantly 

different from levels 9 and 10 (which are not significantly different from each other). While the RR for each 

level from 1 to 8 are very similar (relative to their CI), a DDI of 5 is associated with the largest RR. This means 

SA1s with a DDI of 5 have 2.546 (1.832, 3.539) times the rate of junior rugby participation compared with SA1s 

with a DDI of 10. For each 1 Km a SA1 is from the nearest club, the SA1 has 0.905 (0.833, 0.984) times the rate 

of junior rugby participation. The RR for each of the TAs are significantly different from Wellington City, with 

Porirua City being the most different. Porirua City has 2.538 (1.8, 3.578) times the rate of participation compared 

with Wellington City. Looking at Model-US3, Us codes “C” and “W” tell a similar story to DDI results seen in 

Model-DDI3. Segments “C” and “W” are at opposing ends of the deprivation scale, while having similar 

urbanality (Figure 1). Compared to segment “M”, segment “C” SA1s have 1.617 (1.196, 2.186) times the rate 

of participation, while segment “W” SA2s have 0.445 (0.305, 0.651). Interestingly, segment “S”, has a RR of 

1.591 (1.141, 2.219) despite being much closer to “W” than “C” in terms of deprivation. Porirua and Upper Hutt 

City have significantly higher rates of participation compared with Wellington City. Porirua City and has the 

largest difference, having 2.343 (1.511, 3.631) times the participation.  

 

 

6. DISCUSSION 

Model-DDI3 and Model-US3 indicate that SA2s with high levels of deprivation are associated with a lower rate 

of junior rugby participation. This aligns with the findings from Dissanayake et al. (2020) who found that 

deprivation had a negative effect of junior participation in sport. In both models it seems apparent that the 

relationship between deprivation and participation in nonlinear. In both cases, participation was only negatively 

affected at very high levels of deprivation and seemed to be similar at deprivation levels below the extreme.  

 In the case of the DDI and Us models, the QIC indicated that ‘Year’ was not useful, given that the models 

contained all other variables. This appears to contradict one of the motivations of the study, which was 

understanding drivers of the reduction in rugby participation. It may seem like a straightforward conclusion, but 

it would fail to account for the temporal variation considered by DS/DDI. Another consideration is that the study 

only contains 3 data points across time, making any evidence around this point weak. There was little variation 

in the Us segments at SA2 for this period  

 The ‘TA’ variable allowed for estimates to vary across space, revealing a trend that reflects negatively upon 

rugby participation within Wellington City. Model-DDI3 indicates that each of the 4 other TAs have a higher 

rate of junior rugby participation, while Model-US3 indicates the same but only in Porirua and Upper Hutt City. 

Demographic, socio-economic and cultural factors are known to effect participation in junior sport (Taks and 

Scheerder, 2006), future work may be needed to explain how this relates to the differing participation rates 

throughout the Wellington Region. 

 A key limitation of the study is that the number of players that are estimated to come from different SA2s 

cannot be verified. In its current state, the GEE is trying to predict the output of the IHM, as opposed a true 

player count per SA2. It is thought the IHM estimations can be calibrated in further studies to acquire more 

robust estimations. 

 IHM is not typically used for distributing individuals out from central points. This method is still in its 

infancy, having only been presented by Ward et al. (2018, 2019, 2020). 

 While the GEE accounts for the correlation within repeated measures of SA2s, spatial autocorrelation has 

not been accounted for. This adds to the caution needed when interpreting findings from this study, as parameter 

estimates could be inflated and standard error estimates may be optimistically small (Mets et al., 2017).   

 While not presented in detail here, in 2019 and 2020, the Pearson residuals have noticeable geographical 

pockets where the model does not fit well. This is particularly noticeable in 2021, around Khandallah, where 

there are areas of homogeneous negative residuals. Khandallah is a north-eastern suburb of Wellington, 

approximately 4km from the Central Business District.  The two nearest junior clubs are Wests (6.3Km) and 

Johnsonville\Newlands (4.3Km).  The centre of Khandallah is 550m from Nairnville Park, the home ground of 

Old Boys University Rugby Club, who folded their junior club in 2021.  Consequently, these negative residuals 

indicate that this part of Wellington is systematically underserviced.  This serves as a reminder to administrators 

about the importance of having access to clubs, with the distance parameter from the IHM helping to inform 

optimal distribution of clubs given population levels. 

 

7. CONCLUSIONS 

Rugby is a popular sport in NZ and a source of physical exercise in a time where youth struggle to meet physical 

exercise recommendations. During falling junior rugby participation, studies have identified relationships 

91



between junior sport participation is affected by socio-economic, geographical and cultural variables. An IHM 

was used to estimate the number of junior rugby players in each SA2 across the Wellington region. The estimated 

player numbers were modelled by the DDI and Us, as well as spatiotemporal variables. High levels of 

deprivation were found to have a negative effect on participation rates while SA2s within Wellington City were 

associated with a lower rate of participation compared with the other TAs. A statistically significant trend across 

time was not found, but this may have been due to a lack of repeated measures. The study has some limitations 

around certainty of estimates but provides a start for future work. 
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Abstract We introduce an innovative method for the investigation of human gait, which is based on the 
visualisation of the vertical component of the movement of the centre of mass during walking or running, in 
the space of the coordinates position, velocity, and acceleration of the centre of mass. We collected data and 
numerically approximated the gait by the best-fitting curve for a non-linear model. The resulting equation for 
the best fitting plane or curve in this space is a differential equation of second order. The model that we 
suggest is a Duffing equation with coefficients that depend on the height of a walker or runner and on the 
angular frequency of the oscillation. We present statistical analyses of the distribution of the Duffing stiffness 
depending on the speed.  

Keywords: dynamical systems, Duffing equations, non-linear differential equations, biomechanics, biodynamics, gait modelling 

1. INTRODUCTION

Research on the mechanics of human gait is of interest to different disciplines, for example sport science, 
medicine, and robotics. In this paper, we introduce a model for the movement of the vertical coordinate of a 
person’s centre of mass (COM) during walking and running.  

Human locomotion is an inherently complicated process requiring the complex integration of neural control 
and musculoskeletal dynamics in response to both internal and external forces. In an attempt to strip away 
complexity and gain an understanding of the fundamental principles underpinning human locomotion, simple 
mechanical models have been developed [1, 2]. The mechanical simplification of locomotion allows the 
identification of just a few key parameters that can be manipulated to examine cause and effect relationships 
and identify which features most influence the system.  

Blickhan suggested a linear spring-mass model for hopping in 1989, [3]. Other papers followed, for example 
[4–7]. The motion of the centre of mass is described by the equation 𝑚𝑧!! +𝐾𝑧 = −𝑚𝑔, where 𝑚 is the body 
mass, 𝑧 is the vertical deflection of the centre of mass with the origin on the treadmill surface and the direction 
chosen upwards. The constant 𝐾 is the stiffness, and 𝑔 is gravitational acceleration. By 𝑧!! we denote the 
second derivative of 𝑧, i.e., the vertical acceleration of the centre of mass. There have been different 
approaches on how to calculate leg stiffness. Blickhan’s approach uses the formula 𝐾 = 𝑚𝜔"#, where 𝜔" is the 
stride’s angular frequency of the oscillation, which, during gait, reflects the stride’s angular frequency. [3, 6]. 
Another approach for calculation of the leg stiffness is to find the ratio of 𝐹$, the maximum value of the 
vertical ground reaction force, and Δ𝐿, the absolute value of the leg compression, i.e., 𝐾 = %!

∆'
. This definition 

of leg stiffness is used in several publications [4, 5, 7–9; see 6 for an overview]. There is a third approach to 
leg stiffness calculation based on the measurements of loss of mechanical energy by walking/running, 𝑊. Leg 
stiffness 𝐾 is derived from the formula 𝑊 = (

#
𝐾(∆𝑟)2, where ∆𝑟 is the shortening of a spring (e.g. [10]). In

examining mechanical and metabolic determinants of the human walking gait, Kuo [11, 12] employed an 
anthropomorphic three-dimensional, passive-dynamic model, in which human legs were represented as rigid 
inverted pendulums with small point masses modelling each foot and a larger mass modelling the 
concentration of the COM at the pelvis. These studies drew on earlier models of a rigid swing leg during 
walking [13] and continued the view that walking and running were two distinct gaits that could not be 
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described using similar mechanical models. This view, however, was discounted by Geyer, Seyfarth, Blickhan 
(2006) [14] who demonstrated that a compliant-legged, spring-mass bipedal model consisting of two linear, 
equal and massless springs and a single COM point as an extension of Blickhan’s one-dimensional model, 
reliably predicted ground reaction forces and COM behaviour in both human walking and running. Several 
subsequent studies further validated the efficacy of a bipedal spring-mass model of walking [2, 15–18]. While 
much of the twenty-first century research in the field has adopted the bipedal spring-mass model and focused 
on adapting or adding selected elements to improve prediction accuracy for both walking and running gait 
mechanics, Blickhan’s spring-mass model remains largely valid and has been applied, with modifications to 
suit certain parameters, in recent studies [19, 20].  

Our mathematical model is based on the analysis of three-dimensional movement of COM. We concentrate on 
the projection of the movement of COM on the vertical axis. We suggest a new approach for finding leg 
stiffness for the simple harmonic oscillation model, and then develop a more precise model assuming that the 
stiffness for a fixed speed is not a constant but depends on the displacement of the COM. The innovative idea 
of our method is to visualise the data for the vertical component of a motion of the COM, 𝑧(𝑡), as a curve in 
the three-dimensional space,	(𝑧, 𝑧! , 𝑧!!) (see Section 2). Here 𝑧! and 𝑧!! are the first and the second derivatives 
of the function 𝑧(𝑡), velocity and acceleration, correspondingly. The linear differential equation 𝑧!! +
)
$
(𝑧 − 𝑧") = 0, which is a simple harmonic oscillation model of a gait, can be interpreted as an equation of the 

plane in the space (𝑧, 𝑧! , 𝑧!!). Here 𝐾 is the leg stiffness, 𝑚 is the mass of a participant, and 𝑧" is the average 𝑧-
coordinate of the COM by the movement. Finding the best fitting plane to the data curve gives us the slope of 
the plane )

$ and the value of 𝑧". This simple model suggests that the leg stiffness is a constant. But we can 
observe that the slope in general is not a constant (see for example Fig.2), but can be represented as a non-
linear model with a cubic term. Thus, we use a non-linear differential equation model, approximating the 
curves by the Duffing equation. The best fitting curves have the form 𝑧!! + 𝑘𝑧(𝑧 − 𝑧")(ℎ − 𝑧) = 0. Here ℎ is 
the height of a participant in motion. We called the value 𝑘𝑚 Duffing stiffness. The constant 𝑘 is different for 
each participant and increases with the speed of walking/running. We first analyse how Duffing stiffness 
relates to speed using data for six participants collected by us, then verify the results using data publicly 
available for 42 walking participants and 29 running participants [21, 22].  

Modelling of gait by Duffing equations emphasises the commonalities of stable walking and running. 
However, the curves also contain individual features for each person and velocity. We provide examples of the 
variety of these curves in Section 8. Studying outliers might be more interesting for sport science, because they 
are a sign of some anomalies and instability in gait, which might, for example, suggest an injury.  

2. DATA RECORDING  

We collected walking and running data from six participants (aged 18 to 55 years, 3 men and 3 women). The 
study followed ethical protocols as per ethics requirements (HE19- 239). We measured the vertical coordinates 
𝑧(𝑡) of the COM for each participant walking or running on the treadmill. The markers were the Left and 
Right PSIS and ASIS; we then computed the average of all four. The data was collected for different integer 
velocities, at 100 frames per second, over 10 seconds, for each velocity, using an 8 camera, Qualisys Motion 
capture system with the COM reconstructed using a pelvic marker set within Visual3D.  

Using MATLAB, we visualised the data as curves in the three-dimensional space (𝑧, 𝑧! , 𝑧!!). We filtered out 
high frequency oscillations, such as noise and individual features, using the fast Fourier transform function in 
MATLAB. The direction of the motion along the curve can be found, for example, in the following way. Find 
the point with the greatest 𝑧-coordinate. This is the highest point of the centre of mass during the gait cycle. 
The velocity at this point is equal to zero. Hereafter, the movement goes down, i.e., the velocity 𝑧! becomes 
negative. In both pictures of Figure 1, from those perspectives, the movement is clockwise.  
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Fig 1. A MATLAB 3D figure shown from different perspectives. The green curve is a smoothed data curve with high-pass FFT threshold 
0.03, the red curve is a smoothed data with FFT threshold 0.3.  

 

3. DATA INTERPRETATION  

The pictures in the space with the coordinates position, velocity, and acceleration, are rich in information. For 
example, Figures 2 and 3 show the data for walking (4 km/hr) and running (9 km/hr), respectively, of the same 
participant.  

  
           Fig 2                                                                                                     Fig 3 
Figs 2 and 3 show data for walking, 4 km/hr and for running, 9 km/hr, correspondingly. The horizontal axis shows position and the 
vertical axis the acceleration of the COM. In both Figs, the part CD corresponds to the phase of the gait when a foot touches the surface, 
DE corresponds to the propulsion during toe-off, during EA the COM moves upwards and the acceleration diminishes. The arc AB 
appears only in Fig 3 and corresponds to the flight phase             
 

Here we look into the projection to the plane 𝑧, 𝑧!!, i.e., the horizontal axis shows the position of the COM (in 
meters) and the vertical axis shows the acceleration (in m/se𝑐#). The part CD of both curves corresponds to the 
phase of the gait when a foot touches the surface of the treadmill. In the case of walking, it is a flat line; 
vertical acceleration is close to zero. In the case of running, acceleration is diminishing because of braking 
during initial foot contact. The phase DE corresponds to the propulsion during toe-off, where acceleration (and 
consequently force) increases. On the segment EA acceleration diminishes, turns to zero when the COM 
reaches its average position, and is minimal at the point A. The minimum acceleration for the walking curve is 
−2 m/se𝑐#, the minimum acceleration for the running curve is about −10 m/se𝑐#, i.e., close to the gravitation 
constant g. The acceleration is less during walking than during running because the body is always in contact 
with the ground whereas during running there is a flight phase. 
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The arc AB on Figure 3 corresponds to the flight phase of running. This part of the curve is more complicated 
than just a flat constant 𝑧!! = −𝑔, because it is smoothly connected with the rest of the curve. Some 
information that we get from these curves is common for all participants and walking/running speeds, but 
some features are individual – for example not each participant has the “flight” component AB at running 
speeds, due to individualised transitions between walking and running gait patterns. In this paper we 
concentrate on their common properties, and suggest three models, based on differential equations. We build 
our three models based on data, purely numerically and mathematically. 

4. MODELLING GAIT AS HARMONIC OSCILLATOR  

By Hook’s Law [23], a movement of a spring with stiffness 𝐾 satisfies the equation  

(1) 𝑚𝑧!! +𝐾(𝑧 − 𝑧") = 0,  

where 𝑚 is the mass, 𝐾 is stiffness and 𝑧 − 𝑧" is the displacement of the COM. In three-dimensional space 
(𝑧, 𝑧! , 𝑧!!), Eq (1) is the equation of a plane that passes through the point (𝑧", 0, 0). We find the coefficients in 
Eq. (1) numerically, by finding the best fitting plane for the smoothed data curve. The initial values specify the 
ellipse on this plane. The gravitation constant is included in Eq. (1) implicitly. We can rewrite the equation as  

(2) 𝑚𝑧!! +𝐾(𝑧 − 𝑧*!) = −𝑚𝑔.  

The coordinate 𝑧*! is the average of the vertical coordinate of the centre of mass of a standing body but in a 
walking/running posture. It is not exactly the same as the coordinate of COM in a standing position. The 
relation between 𝑧" and 𝑧*! is calculated from Eqs. (1) and (2) and is 𝑧" = 𝑧*! −

$+
)

.  

5. MODELLING BY A NON-LINEAR HOMOGENEOUS DIFFERENTIAL EQUATION  

5.1. Best fitting curve, interpreted as a non-linear second order differential equation. Non-linear gait 
dynamics has been discussed, for example, in [24]. Stride-to-stride fluctuations, which are often considered to 
be noise, actually convey important information. To describe these fluctuations, we refine the method used for 
the harmonic oscillation model in section 4. We approximate the movement of the COM during walking or 
running by a Duffing equation, i.e., a homogeneous non-linear second order differential equation. We write  

(3) 𝑚𝑧!! +𝐾(𝑡)(𝑧 − 𝑧") = 0,  

where, unlike the harmonic oscillation model from Section 4, we consider stiffness to not be constant, but as 
dependent on time, 𝐾(𝑡), as stiffness and viscosity depend on a phase of a stride. For example, the slope on 
Figures 2 and 3 depends on 𝑧(𝑡), and the slope in the plane 𝑧, 𝑧!! reflects stiffness: it is )(!)

$
	at a time t. We 

divide both sides by 𝑚 and consider the approximation of the function 𝑘(𝑡) = )(!)
$

 by polynomial,  

(4) 𝑧!! + (𝑘((𝑧 − 𝑧") + 𝑘#(𝑧 − 𝑧")# + 𝑘.(𝑧 − 𝑧").) = 0.  

As the value 𝑧" is not known beforehand, we look for the best fitting curves of the form:  

(5) 𝑧!! + 𝑘(𝑧 + 𝑘#𝑧# + 𝑘.𝑧. + 𝐶 = 0.	 

The best fitting curve in the chosen coordinates is a differential equation of second order. Initial conditions are 
the values 𝑧(0) and 𝑧!(0). We visualize the solution of this differential equation as a curve in the same 
coordinate system as the data curve. See, for example, Figure 4, where the red curve is the data curve, and the 
blue curve is the solution of the differential equation given by the best fitting curve. We computed a scaled 
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mean squared error between the Duffing equation output and the observed data. As the values 𝑧, 𝑧! and 𝑧!! 
have different units, we scaled each value by dividing by the difference between the minimum and maximum 
values on the corresponding axis.  

5.2. Finding and analysing the fixed points. We are also interested in the fixed (equilibrium) points [25]. We 
first rewrite the second order differential Eq. (5) as a system of first order differential equations:  

(6) 𝑧! = 𝑧(,  (𝑧()! = −𝑘(𝑧 − 𝑘#𝑧# − 𝑘.𝑧. − 𝐶.  

We found the fixed points by solving the equilibrium equations (see for example [26])  

       (7) 𝑧( = 0,  −𝑘(𝑧 − 𝑘#𝑧# − 𝑘.𝑧. − 𝐶 = 0. 

The solutions to Eq. (5) are plotted in the same coordinate system as the data curves, see for example Figure 4. 
The solution curves are stable if we set one fixed point equal to zero, i.e., 𝐶	 = 	0. Then the two other fixed 
points occur at 𝑧" (the centre of the closed curve, average coordinate of the centre of mass during 
walking/running), and at ℎ for stable walking/running. The differential equation Eq. (5) becomes  

       (8) 𝑧!! + 𝑘𝑧(𝑧 − 𝑧")(ℎ − 𝑧) = 0.  

Numerical computations show that, for stable gait, the fixed point 𝑧 = 𝑧" is a centre, while the fixed points 
𝑧 = 0 and 𝑧 = ℎ are saddles.  

5.3. Interpretation of the parameters in the model. Eq. (8) shows that we can model the movement of COM 
with a Duffing equation, up to a constant 𝑘, knowing only ℎ and 𝑧". The values ℎ and 𝑧" are close to the height 
of a person and to the average coordinate of the COM in motion, correspondingly. The gravitation constant 𝑔 
is involved implicitly in the differential equation, in a similar way as in the harmonic oscillation model in 
Section 4. The coefficient 𝑘 does not have the meaning of the square of the angular frequency, 𝜔# = *!/0012**

$3**
, 

as in a linear case (Section 4), but 𝑘 behaves in a similar way: it increases with an increase of the 
walking/running speed. We call this constant, multiplied by the mass, the Duffing stiffness. The meaning of 
the coefficient 𝑘 is found from the following consideration. We rewrite Eq. (8) as  𝑧!! + 𝑘[−(𝑧 − 𝑧"). +
(ℎ − 2𝑧")(𝑧 − 𝑧")# + 𝑧"(ℎ − 𝑧")(𝑧 − 𝑧")] = 0. For 𝑧 close to 𝑧"	the linear approximation at 𝑧" is 

         (9) 𝑧!! + 𝑘𝑧"(ℎ − 𝑧")(𝑧 − 𝑧") = 0.  

Comparing this equation with Hook’s Law (Eq. (1)) we get an expression that relates the angular frequency 𝜔 
with the coefficient 𝑘 and the values 𝑧" and ℎ: 𝜔# 	≈ 𝑘𝑧"(ℎ − 𝑧"). Hence, the Duffing stiffness  

        (10) 𝑚𝑘 ≈ $4"

5#(675#)
= )

5#(675#)
. 

We used that leg stiffness 𝐾	is expressed as 𝐾 = 𝑚𝜔#. Assuming the model when the centre 𝑧" is 
approximately in the middle between two saddle points, 0 and ℎ, we get ℎ	 = 	2𝑧", and Eq. (15) becomes 
symmetrical, 

         (11) 𝑧!! + 𝑘𝑧"#(𝑧 − 𝑧") − 𝑘(𝑧 − 𝑧"). = 0, where 𝑘 > 0,  

and 𝑘 ≈ 4"

5#"
. Eq. (11) is the Duffing equation for a softening oscillator [26], i.e., the stiffness diminishes with 

the displacement.  

5.5. Example based on the collected data. Figure 4 shows the observed smoothed data curve (red) and the 
curve corresponding to the solution of Eq. (8) (blue) for one of the participants, together with the fixed points. 
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The differential equation that describes the movement of the centre of mass of this participant running at the 
speed 8 km/hr is 𝑧!! + 279(𝑧 − 0.9)(1.8 − 𝑧) = 0. We have rounded 𝑘 to an integer, and 𝑧" and ℎ to the first 

decimal place. From 𝑘 = 279, 𝑧 = (
#
ℎ = 0.9 we can compute 𝜔 ≈ C 8

5#"
≈ 18.56, i.e., the number of strides in 

a second is 4
#9
≈ 2.95. This participant made 24 strides in 10 secs, i.e., the real number of strides in a second is 

2.4.  

 

 

Fig 4. Curve (blue) for the solution to Eq. (8) for a participant (178cm tall, running at 8 km/h) compared with the data curve (red). The 
mean squared error is 0.015. The fixed points are saddles at 𝑧 = 0 and 𝑧 ≈ 1.8 and the centre at 𝑧! ≈ 0.9  

6. STATISTICAL ANALYSIS  

6.1. (University of New England (UNE) data. Fig.5 (left) shows that the Duffing stiffness depends on the 
speed of walking/running for each participant. By visually inspecting the graph, we see some outlier points. To 
further examine these, we calculated the standard deviation of Duffing stiffness for each participant, for the 
walking data. Two participants had standard deviations (SDs) > 400, while the rest of the participants had SDs 
< 100. Our observation of these two participants during the data recording showed that they were 
uncomfortable with some of the speeds, and they reported having no experience with treadmills. Therefore, we 
excluded these two participants from all further analyses. Fig.5 (right) shows the data for the remaining four 
participants.  

The behaviour of the Duffing stiffness is different for walking (3 - 8 km/hr) and running (9 - 14 km/hr). 
Therefore, we separately fit data for walking and running speeds. We fitted a Linear Mixed Effect model in R 
for the walking data. We included speed as the fixed effect and Duffing stiffness as the dependent variable. We 
allowed both the slopes and the intercept to vary across participants. The model showed a slope estimate of 
𝛽G=41.4, 𝑡 = 9.1, 𝑝 = 0.004. For the running data, we performed an equivalent analysis. Here, the slope 
associated with speed trended in a positive direction, 𝛽G = 13.9, 𝑡	 = 3.0, 𝑝	 = 0.05.  
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Fig 5. Duffing stiffness depending on speed with and without outliers. We consider the models for walking and for running separately. 
Each line represents a different participant  

6.2. Comparing UNE dataset against public datasets. Next, we compare our data against public datasets for 
42 walking participants [21], and 29 running participants [22]. As these sources were set up slightly differently 
than the UNE data, in order to match the data, we estimated the COM during walking or running, using the 
midpoint of the ASIS markers and subtracting the lowest value for the heel’s marker.  

Figure 6 shows the relationship between speed and Duffing stiffness.  

 

Fig 6. Duffing stiffness as a function of speed, with and without outliers. Note that the Duffing stiffness, 𝑘, depends also on the height of 
the COM of a participant, 𝑧!, and the angular frequency of walking/running, 𝜔: 𝑘 ≈ "!

#"!
 . 

First, we removed one participant with only one data point. Then, to identify outliers, we calculated the SDs in 
Duffing stiffness for each participant and excluded outliers for the walking and the running datasets, 
separately. For the walking data, [22], the SDs ranged from 39.2 to 3183.5. We chose to remove all 
participants with SD > 100. This left us with 12 participants for the walking data. We proceeded to fit the data 
with a Linear Mixed Effect model, akin to the UNE data. Again, we get a significant effect of speed on 
Duffing stiffness, 𝛽G=36.7, 𝑡 = 11.8, 𝑝 < 0.0001. For the running data, [21], we removed three out of 29 
participants with SD > 100. The Linear Mixed Effect model showed a significant effect of speed, 𝛽G = 13.5, 
𝑡 = 14.0, 𝑝 < 0.0001.  

Finally, we compared the two datasets against each other. We created two models, one for running and one for 
walking, including both of the trimmed datasets. In the Linear Mixed Effect model, Duffing stiffness acted as 
the dependent variable, and the fixed effects were speed, dataset UNE versus [21, 22], with UNE acting as a 
baseline. We allowed the slope and the intercept to vary across participants. For walking, the effect of speed 
was, again, significant, 𝛽	L = 36.7, 𝑡 = 12.4, 𝑝 < 0.0001. However, the effect of dataset was not significant, 
𝛽G = −43.1, 𝑡 = −1.5, 𝑝 = 0.2,	nor was the interaction between dataset and speed, 𝛽G = 5.3, 𝑡 = 0.9, 𝑝 = 0.4. 
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Similarly, in the running dataset, the effect of speed was  𝛽G = 13.5, 𝑡 = 13.2, 𝑝 < 0.0001. Neither the effect 
of dataset, nor the interaction of dataset and speed were significant, 𝛽G = 27.5, 𝑡 = 0.9, 𝑝 = 0.4 and 𝛽G = 3.4,
𝑡 = 1.1, 𝑝 = 0.3, respectively.  

In summary, we found, overall, a significant positive relationship between speed and Duffing stiffness. For the 
running UNE data, the slope was not significant; however, when we combined the two datasets, the running 
slope was significant, and we found no interaction. Thus, the lack of significance in the UNE running data may 
be a result of low statistical power. We found no main effect of dataset, nor an interaction between dataset and 
speed. Thus, we find no evidence of a difference across datasets.  

6.3. Identifying and examining outliers. From a practical perspective, an interesting aspect is participants 
whose data deviates from the fitted model. Here, we defined outliers based on SDs. This is the simplest 
method, which can easily be applied by a sport scientist without mathematical training. We drew a somewhat 
arbitrary threshold, where we treated all participants with a SD > 	100 as outliers. The reasons for high SD 
could vary across participants. For example, a typical problem for uncomfortable speeds less than 3 km/hr is 
an additional loop, as on the red line in Fig.7. The Duffing equation does not take into account the loop, as the 
blue approximation curve demonstrates. The other example of an outlier is illustrated in Fig. 8, where the 
curve breaks down into two parts, corresponding to the left or to the right leg. Red lines represent the data, 
blue lines are the solutions of the differential equation. A third reason for outliers that we noticed is an 
instability of walk, when each step varies in the amplitude and in the average height.  

Fig 7. Slow walking speeds (< 3 km/hr, FTT=0.03) often contain an additional loop because of the compelled braking during each step 

Fig 8. Asymmetry of the gait (4.7 km/hr) due to different strengths of the left and the right legs. The red curve brakes down into two parts, 
corresponding to the left or to the right leg  

7. DUFFING EQUATION WITH VISCOSITY AND EXCITATION FORCE

7.1. Motivation. Approximation by a homogeneous equation with zero viscosity does not take into account the 
asymmetry caused by damping and excitation forces. For example, the red curve in Figure 9 shows a smoothed 
data curve for a running participant (14 km/hr, FFT threshold=0.3) in the phase plane (𝑧, 𝑧!). This curve is 
close to an ellipse, and the absolute value of the slope of the main axis of the ellipse, AC, is equal to 𝑣 = :

$
 if 

we assume that the viscosity is a constant. (If the viscosity 𝜈 = 0, the slope vanishes, and the corresponding 
axis is horizontal.) The symmetry with respect to 𝑧! = 0 is disturbed by the slope. Now we compare this 
slightly asymmetrical typical data curve with the symmetrical energy level curves, see Figure 9. Solutions of 
Eq. (8) with different initial values of 𝑧(𝑧! = 0) give a set of energy level curves. The red curve is the data 
curve, the movement occurs in the direction ABCD. Energy is gained twice in each cycle (gait) in a phase of a 
“step”, BC, and in a phase of a “fall” (in general not free fall), DA. The maximum of the energy occurs at 
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points A and C, the minimum occurs when at points B and D. There is a natural desire to find an 
approximation that considers the viscosity and the restoring force.  

Fig 9. The energy level curves (blue) and the data curve (red) in the phase plane (z,zt). The absolute value of the slope AC multiplied by 
mass m is the viscosity ν 

7.2. A best fitting curve for a non homogeneous differential equation We identified the best fitting curve in 
the form 

(12) 𝑧!! + 𝑣𝑧! + 𝑘𝑧"#(𝑧 − 𝑧") − 𝑘(𝑧 − 𝑧"). = 𝑓𝑐𝑜𝑠(𝛺𝑡 − 𝜑),

where the term 𝑣𝑧! is the linear approximation of the damping force divided by mass.	The constant 𝑓 = %
$

 , 
where 𝐹 is the amplitude of the excitation force, 𝛺 is the angular frequency of the excitation force. The 
gravitation constant 𝑔	is involved in the equation in a similar way as for the two already discussed models. As 
in the previous models, the equation for the best fitting curve was interpreted as a second order differential 
equation. The solution of the equation was computed and plotted in the same system of coordinates as the data 
curve. However, the balance between the viscosity and excitation force was too delicate, and most solution 
curves became stable spirals.  

8. CONCLUSION

We introduced a new method for the investigation of human gait. This method is based on the visualisation of 
the vertical component of the movement of the COM during walking or running, in the space of the 
coordinates position, velocity, and acceleration of the centre of mass. We suggested a model by a non-linear 
homogeneous differential equation. We also had a partial success in approximation of the movement by a 
second order non-linear non-homogeneous differential equation. In this paper, we concentrated on features 
that are common for walking and for running. The individual features of the curves are of special interest for 
sport science, because they point to uncomfortableness in walking or running. We plan to investigate possible 
reasons for injuries by determining how stress is generated. One possible idea is to investigate why female 
runners have more frequent ACL (anterior cruciate ligament) tears than men [27].  
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Abstract 
 

Mathematics is applied to the tennis challenge system to derive a fairer challenging method. This method could 

be used in actual tournament play creating greater spectator interest. The concept of ‘importance’ is used such 

that a player has a free challenge if the importance of a point is above a certain threshold.    
 

Keywords: Importance of points, Markov Chain model, player fairness 

 

1. INTRODUCTION   

The new challenge system for close line calls in tennis has been used on the ATP and WTA tour for Grand Slam 

events since the 2006 US Open, and was designed to increase fairness for players by obtaining accurate line 

calls and enhance spectator interest through video technology. In the current system, players have unlimited 

opportunity to challenge, but once three incorrect challenges are made in a set, they cannot challenge again until 

the next set. If the set goes to a tiebreak game, players are given additional opportunities to challenge (usually 

one extra). If the match is tied at six games all in an advantage set, the counter is reset with both players again 

having a limit of up to three incorrect challenges in the next 12 games, and this resetting process is repeated after 

every 12 games. 

Strategies as to when players should challenge have recently appeared in the literature. Pollard et al. 

(2010) show that challenge decisions are based on the rate at which challenges occur, the expected number of 

points remaining in the set, the number of challenges remaining in the set, the probability of the challenge 

decision being successful and the importance of the point to winning the set. Clarke and Norman (2010) apply 

dynamic programming to the challenge system to investigate the optimal challenge strategy and obtain some 

general rules.  

 

There appears to be problems with the current challenge system:  

 

• Firstly, both of the above articles show that early in the set a player needs to decide whether to challenge 

or save challenges to later on in the set when the points are typically more important. Having to make 

such decisions is completely irrelevant to the game of tennis itself. The aim of the contest is to find the 

better player, and not to favour the player who is luckier within, or better at playing the challenge 

system. This is reflected by an article Replay System Becomes Part of Players’ Strategies in The New 

York Times by Greg Bishop during the 2009 US Open.  

http://www.nytimes.com/2009/09/11/sports/tennis/11challenges.html  

 

• Secondly, a player can run out of challenges because that particular set has a lot of balls that go close 

to the lines. This is perhaps particularly true in men’s singles and men’s doubles. The problem is 

exacerbated when each player does not have a similar number of challenges. A player who plays more 

balls near the lines is disadvantaged relatively. The player who, by chance has the need for more 

challenges, is disadvantaged.   

 

• Thirdly, it would appear to be disappointing for the player and the spectators when that player runs out 

of challenges, the point is very important, and a challenge would have a clear likelihood of success. 

What is the chance that a grand slam final will be ‘messed up’ by an umpire making a wrong call and 

the player having run out of challenges, and subsequently losing the final when he might well have won 

it otherwise? This would be a very bad result for the player, the umpire and the game. Maybe this 

probability is not quite as small as some people might expect.  
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METHODS  

a) Markov Chain model  

We explain the method by first looking at a single game where we have two players, A and B, and player A has 

a constant probability pA of winning a point on serve. We set up a Markov chain model of a game where the 

state of the game is the current game score in points (thus 40-30 is 3-2). With probability pA the state changes 

from a, b to a + 1, b and with probability qA=1-pA it changes from a, b to a, b + 1. Thus if PA(a,b) is the probability 

that player A wins the game when the score is (a,b), we have: 

 

PA(a,b)=pAPA(a+1,b)+qAPA(a,b+1) 

 

The boundary values are:  

PA(a,b) = 1 if a = 4, b ≤ 2, PA(a,b) = 0 if b = 4, a ≤ 2.  

 

The boundary values and formula can be entered on a simple spreadsheet. The problem of deuce can be handled 

in two ways. Since deuce is logically equivalent to 30-30, a formula for this can be entered in the deuce cell. 

This creates a circular cell reference, but the iterative function of Excel can be turned on, and Excel will iterate 

to a solution. In preference, an explicit formula is obtained by recognizing that the chance of winning from deuce 

is in the form of a geometric series  

 

PA(3,3) = pA
2 + pA

22pAqA + pA
2 (2pAqA)2 + pA

2 (2pAqA)3 +..………   

where the first term is pA
2 and the common ratio is 2pAqA 

 

The sum is given by pA
2/(1-2pAqA) provided that -1<2pAqA<1. We know that 0<2pAqA<1, since pA>0, qA>0 and 

1-2pAqA=pA
2+qA

2>0.  

 

Therefore, the probability of winning from deuce is pA
2/(1-2pAqA). Since pA+qA=1, this can be expressed as:  

 

PA(3,3) = pA
2 /(pA

2+qA
2) 

 

Excel spreadsheet code to obtain the conditional probabilities of player A winning a game on serve is as 

follows:  

Enter pA in cell D1 

Enter qA in cell D2 

Enter 0.60 in cell E1 

Enter =1-E1 in cell E2 

Enter 1 in cells C11, D11 and E11 

Enter 0 in cells G7, G8 and G9 

Enter = E1^2/(E1^2+E2^2) in cell F10  

Enter =$E$1*C8+$E$2*D7 in cell C7 

Copy and Paste cell C7 in cells D7, E7, F7, C8, D8, E8, F8, C9, D9, E9, F9, C10, D10 and E10 

 

Notice the absolute and relative referencing used in the formula =$E$1*C8+$E$2*D7. By setting up an equation 

in this recursive format, the remaining conditional probabilities can easily and quickly be obtained by copying 

and pasting.   

Similar recursion formulas with boundary conditions can be obtained for a tiebreak game conditional on the 

point score, set conditional on the game score and a match conditional on the set score. A predictions model is 

then applied to estimate the parameters of the probabilities of players winning a point on serve (Barnett et al, 

2011).  

 

b) Importance of points 

Morris (1977) defines the importance of a point for winning a game (IPG) as the probability that the server wins 

the game given he wins the next point minus the probability that the server wins the game given he loses the 

next point. The importance of a point to winning a game is thus:  

IA(a,b)=PA(a+1,b)-PA(a,b+1). 

 

Table 1 gives the importance of points to winning the game (IPG) when the server has a 0.62 probability of 

winning a point on serve, and shows that 30-40 and Ad-Out are the most important points in the game. In a 
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similar way, we can define the importance of a game to winning a set and the importance of a set to winning a 

match. Table 2 gives the importance of games to winning a tiebreak set (IGS) for player A serving. Player A and 

Player B were assigned point probabilities of 0.62 and 0.60 respectively to reflect overall averages in men’s 

tennis. It is clear that every point is equally important for both players. Table 2 shows that the tiebreak game has 

the highest importance of 1.00, as the winner of this game wins the set. Similarly, table 3 gives the importance 

of sets to winning a best-of-5 set match (ISM) and shows that the deciding set at 2 sets-all has the highest 

importance of 1.00, as the winner of this set win the match.  Morris (1977) derived the following useful 

multiplicative result to obtain the importance of a point to winning the match (IPM): For any point of any game 

of any set:        IPM = IPG * IGS * ISM.  

The definition of importance of a point in a match is a way of stating how much difference will result 

in the outcome of the match depending on whether a point is won or lost. In the context of a challenge system, 

importance of a point in a match can be viewed by how much percentage error will occur if a wrong decision is 

made. For example, suppose the score in a best-of-5 set match (all tiebreak sets) is 2-2 in sets, 5-5 in games and 

30-30 in points and player A is currently serving. Suppose player A is winning 62% on serve and player B is 

winning 60% on serve. Using a Markov Chain model (Barnett and Clarke, 2005), player A has a 51.5% chance 

of winning the match from that position. If player A won the point, then his chance of winning the match would 

be 60.3%: whereas if player A lost the point then his chance of winning the match would be 37.3%. Therefore, 

the importance of the point in the match is given as 60.3%-37.3%=23.0%. If a wrong decision was made at that 

particular point in the match, then it would cost one of the players 23 percentage points in their chance of winning 

the match. 

 

 Receiver’s score  

S
er

v
er

’
s 

sc
o

re
 

 0 15 30 40 Ad 

0 0.25 0.34 0.38 0.28  

15 0.19 0.31 0.45 0.45  

30 0.11 0.23 0.45 0.73  

40 0.04 0.10 0.27 0.45 0.73 

Ad    0.27  

Table 1: Importance of points to winning a game when the server has a 0.62 probability of winning a point on 

serve 

 

 Player B’s score  

P
la

y
er

 A
’

s 
sc

o
re

  0 1 2 3 4 5 6 

0 0.29 0.29 0.22 0.18 0.06 0.02  

1 0.26 0.32 0.33 0.21 0.16 0.03  

2 0.25 0.29 0.36 0.37 0.20 0.11  

3 0.13 0.27 0.33 0.42 0.43 0.14  

4 0.08 0.11 0.30 0.38 0.52 0.54  

5 0.01 0.06 0.08 0.34 0.46 0.52 0.53 

6      0.47 1.00 

Table 2: Importance of games to winning a tiebreak set when player A and player B have a 0.62 and 0.60 

probability of winning a point on service respectively and player A is serving 

 

 B’s score 

A
’

s 
sc

o
re

 

 

 0 1 2 

0 0.36 0.42 0.32 

1 0.32 0.49 0.57 

2 0.18 0.43 1.00 

Table 3: Importance of sets to winning a best-of-5 set match when player A and player B have a 0.62 and 0.60 

probability of winning a point on service respectively 
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3. RESULTS 

a) Proposed new challenge system 

It is proposed that the present challenge rule is modified in one way. Namely, that a player is allowed to challenge 

on points with sufficiently large importance, without risking that player’s challenge point total. 

Suppose the threshold value on when a player can always challenge a line call was given by the 

importance of the point in the match at 2 sets-all, 3 games-all, 0 points-all and player A serving. This is calculated 

as 1.00*0.42*0.25=0.104 when player A and player B have a 0.62 and 0.60 probability of winning a point on 

serve respectively. Then a player can always challenge at 2 sets-all and 3 games-all, only if the point score in 

the match has an importance of at least 0.104. This occurs at 2 sets-all and 3 games-all for 30-40 or Ad-Out 

(IPM=0.305), 15-40 (IPM=0.189), 15-30 (IPM=0.188), 30-30 or deuce (IPM=0.187), 0-30 (IPM=0.161), 0-15 

(IPM=0.143), 15-15 (IPM=0.132), 0-40 (IPM=0.117), 40-30 or Ad-In (IPM=0.115) and 0-0 (IPM=0.104). This is 

represented in table 4 for a range of game scores in the deciding set, where an X indicates that a challenge is 

always allowable by both players.  Note that a player can challenge at 2 sets-all and 6 games-all (tiebreak game), 

only if the point score has an importance of at least 0.231. This occurs for the majority of points in the tiebreak 

game, as expected.  

 

 Score line at 2 sets-all (player A serving) 

Point score  0-0 1-1 2-2 3-3 4-4 5-5 

30-40 or Ad-Out  X X X X X X 

15-40 X X X X X X 

15-30 X X X X X X 

30-30 or Deuce X X X X X X 

0-30 X X X X X X 

0-15  X X X X X 

15-15   X X X X 

0-40    X X X 

40-30 or Ad-In    X X X 

0-0    X X X 

30-15     X X 

15-0, 30-0, 40-15 or 40-0       

Table 4: Indication as to whether a player can always challenge on a particular point in a match for a range of 

game scores in the deciding set given that the threshold value is given as 0.104  

 

4. DISCUSSION  

Being able to challenge ‘free of charge’ on some point scores later in the set, but not earlier, might 

cause confusion for some players in some situations. To get around this problem, you introduce a "challenge" 

screen visible to both players which gives a green light before the point is played if the point has a sufficient 

level of 'importance'. Otherwise the screen is empty (or a red light). Spectator’s interest would also be lifted, 

quite possibly or naturally. It would give commentators an additional thing to talk about being the importance 

of points. Note that the free challenge light going on could be automated with the umpire’s score card.  

Instead of giving three incorrect challenges per set as proposed above, suppose players are given x 

challenges per set and have unlimited opportunity to challenge, but once x incorrect challenges are made in a 

set, they cannot challenge again until the next set. Further, players can always challenge when the point has a 

sufficient level of ‘importance’ = y without affecting their challenge point total, otherwise players cannot 

challenge if they have run out of their challenge point total.  

 

Scenario 1)  

When x=3 and the level of ‘importance’=1, is equivalent to the current system. 

 

Scenario 2)  

When x=0 and the level of ‘importance’=y, is “optimally” the best system in terms of minimizing time on 

player’s challenging on “unimportant” points. 

 

Scenario 3)  

When 1≤x≤3 and the level of ‘importance’=y, is somewhere between Scenario 1) and Scenario 2) 
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At the very least Scenario 3) could be adopted such that players can always challenge when the point 

has a sufficient level of ‘importance’ = y without affecting their challenge point total. However, Scenario 2) 

could be obtained as an “optimal” system in terms of minimizing time on player’s challenging on “unimportant” 

points.   

However, whilst the fifth set is the most important set, it may be better to have the same procedure in 

each set. This is likely to be more easily accepted by the relevant people. An advantage of this is that the 

operation of the system would be identical for all sets. There is something nice about uniformity. Further, under 

the system described above, there would be points in earlier sets that are more important than some of the ‘free 

challenge’ points in the fifth set. This may present a problem. So just looking at set importances rather than 

match importances could be a preference. 

Maybe every point in the tiebreak game should be a free challenge (with no ‘additional’ challenges 

given to the players at 6/6 because the set is ‘long’) and any point within the set at least as important as any point 

in the tiebreak game should also be free. This could be a useful selling point to the interested parties. If this was 

considered too generous, any point at least as important as say 2/2 within the tiebreak game could be a free 

challenge. The fact that players are given an extra challenge at 6/6 gives some merit to the ideas in this paper. 

The idea in this paper in fact parallels the present rules at 6/6. It just formalizes some present operational 

characteristics.  

If the “challenge” screen was too much of a problem for players then you could have a system where a 

free challenge was given on every point in tiebreak games (representing a high level of importance) and at say 

set/match points.  

 

5. CONCLUSIONS  

Throughout this article it is demonstrated that a fairer method to the line call challenge system is such that a 

player should always be allowed to challenge at a score line with a certain level of importance without affecting 

their challenge point total. 
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Abstract 
 

The intent of this research is to investigate whether the players’ location on the tennis court is related to their 

likelihood of success in a rally. Specifically, the players’ distance from the centre net and centre line are key 

features that can be engineered.  This type of data is obtained using a method for extracting the physical 

coordinates of the players on the court from broadcast footage. The physical coordinates of each player are 

extracted using a proprietary pipeline developed by Play in the Grey (McDonald et. al., 2020).  This provides 

space-time coordinates for each frame in the footage which are used as input for the in-game prediction model.  

This research draws from previous research done on machine vision algorithms for Tennis footage (e.g. Chu 

et. al., 2010; Jiang et. al., 2009) and on various statistical methods for predicting Tennis match outcomes (e.g. 

Cornman, et. al., 2017; Kovalchik et. al., 2019; Kovalchik, 2020).   

    Initial results reveal that the closer a player is to the middle of the court towards the net, the greater the 

chance of winning the rally.  The ability to process data in this way has implications for improving feedback to 

players. 
 

Keywords: Feature Engineering, Logistic Regression 
 

1. INTRODUCTION 

The integration of new technology in sports is expanding the level of information and insight that can be 

extracted from video footage. Using automated computer vision systems could make in-depth insights more 

accessible to the benefit of athletes, coaches, broadcasters, as well as spectators.  

Aside from the traditional statistics related to a sport, there has been a growing appetite for the creation of 

data-driven novel metrics that enhance the spectatorship of the sport. These metrics are not the usual statistics 

derived from historical performance; they are characteristically more viewer-friendly real-time analysis 

interwoven with graphic visualisations. An example of this type of new generation metric is the Premier 

League’s development of ‘momentum tracker’ which calculates the likelihood of a goal within the next 10 

seconds of gameplay.  

The aim here is to apply a novel method of creating a real-time win-prediction model on Tennis rallies.  

We will derive physical metrics directly from broadcast tennis footage and use this data to create a model to 

determine which player is likely to win the current rally. The scope of this research is to accurately track the 

movement of the players relative to the centre net, in a singles tennis match rally.  

The play of a single point in Tennis is by a rally. In simple terms, a rally in tennis starts with one player 

serving the ball from behind the baseline and ends when one player fails to return the ball within the 

opposition’s court area. An average rally in a professional tennis match can last anywhere between 1 second to 

10 seconds. The project will focus on a single rally event; footage used will be of an isolated rally which can 

vary in duration and a win-prediction model will be calculated on the variation of win probabilities within a 

rally.  

The project requires two main components:  

1. A reliable and accurate machine-vision algorithm to track player movement relative to the centre net 

within a given video footage. 

2. An accurate predictive model to determine the players’ likelihood of winning.  

For the first component, we will be using a proprietary algorithm developed by the company Play in the 

Grey (www.playinthegrey.com) to calculate the movement of the player within a single rally (McDonald et. al. 

2020; Trowland et. al., 2020). The footage fed into the model is solely from the court view of a rally. In 

televised tennis matches, this viewpoint is the standard way of showing a single rally and is captured from a 

height above and behind one of the players’ showing the entire court from a down-angle view. For most 

rallies, the court view footage provides a relatively unobstructed and stable recording of the entire duration of 

a rally. The Play in the Grey model can take in this angled view of the court and players and project a 2-

dimensional map of the match at each frame with X and Y coordinates of the player’s location relative to the 

court. The model creates this 2D map from homography estimation which has been refined to minimise loss of 
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positional accuracy as outlined in Trowland et al. (2020). Whilst the court view footage tends to be relatively 

stable, there are slight camera movements during the rally which have the potential to affect the accuracy of 

the estimation. The model is also able to adjust for accuracy losses due to camera movements such as pan, 

zoom and tilt as explained by McDonald et al. (2020).  

There is a substantive amount of literature on footage-derived object detection models developed 

specifically for tennis. Useful insights can be derived from literature for the purposes of this project, on the 

type of footage used (camera angle), separating useful elements from background noise and movement 

tracking. 

 

FOOTAGE 

Previous studies using computer vision on broadcast Tennis footage have opted for a similar approach by 

solely using the “court view” perspective footage as implemented by Archana and Geetha (2015), Jiang (2009) 

and Chu and Tsai (2010). To utilise raw broadcast footage, Chu and Tsai (2010) implemented a court view 

detection algorithm which recognised when the correct type of footage was being played and would begin the 

object detection algorithms. Detection of court view was carried out by identifying whether the dominant 

colours in the frame match that of the court view frame. 

 

ALGORITHMS FOR PLAYER DETECTION IN TENNIS  

A common issue with using the court view footage is that the player on the far court is represented by a 

smaller number of pixels and their movements are harder to track. The player on the far court is also more 

likely to be obstructed in view by the umpire, ground staff or advertisements. In dealing with this issue, both 

Archana and Geetha (2015) and Jiang (2009) opted for a partition of the two halves of the court with two 

search windows each focusing on one player.   

Jiang (2009) implemented a further step in player detection by creating an ‘Adaptive Search Window’. 

The court boundaries are established by the Initial Search Window for the upper and lower half of the court, 

then non-dominant colour detection is implemented to detect the player (dominant colour being the average 

colour of the full court). With the initial identification of the player, a smaller adaptive search window is 

created, which based on the possible speed of a human(2-7m/s) is only big enough to anticipate potential 

movements by the player but small enough that noise is not included in the search area. Only tested on 50 

segments from 12 tennis games.  

Archana and Geetha (2015) implemented the background subtraction method; develop a background 

model from a collection of background images then important elements of footage are derived by subtracting 

against the background model. Rate of success for player tracking – upper half player tracking 85.96% and 

lower half player tracking 91.23%.  

 

PREDICTIVE ALGORITHMS 

There is sufficient literature on applying building algorithms to predict tennis match outcomes, however, there 

is a limitation on the utility of these studies to this project’s objective. These studies have only utilised 

statistics from determined and completed matches as well as external factors such as player rankings whereas 

the focus of this project is to make predictions based on real time in-game statistics and therefore more limited 

in the data available to make predictions.  

Cornman et. al. (2017) is a good example of the current literature on Tennis match predictions. The study 

carried out match outcome predictions using several common machine learning algorithms including ANN, 

Random Forest, and others on historical match data. The features that were used for this study included but not 

limited to rankings, age, height, aces, double faults, and surface type. Whilst they yielded somewhat successful 

prediction rates, the algorithm is limited to historic data and is unable to account for real-time statistics from a 

match.  

Literature on incorporating real-time statistics to create dynamic win-probabilities on sports such as 

football, NFL (US) are more established than tennis. Robberechts et al. (2019) outline that to calculate in-

game win-probabilities, sport-specific features that are influential to scoring must be selected to make an 

effective dynamic predictor. Domain knowledge may be necessary to select the correct features to include. The 

study utilised a Bayesian model using eight features for each football team and predicted the future number of 

goals a team will score as a temporal stochastic process.   

Kovalchik and Reid (2019) presents a novel approach to creating a dynamic model for tennis win 

predictions. The study has utilised a dynamic empirical Bayes updating rule to create a real-time prediction 

model which uses both in-game features as well as pre-match features. The study identifies serving as a key 

element in forecasting the probabilities of a players’ success in a Tennis match. The model initialises a win-
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expectation using the player’s historical serving performance, then this win-expectation is adjusted throughout 

the match using the actual in-game serving performance of the player. The study found that the dynamic 

modelling provided a 28% reduction in error of in-match serve predictions as well as a 4% increase in overall 

win prediction.  

Kovalchik (2020) also studied the optimization of the Elo rating system to predict the results of tennis 

matches. She carried out the research by combining MOV (Margin of Victory) and four different models: 

linear, joint additive, multiplicative and logistic. In that model, data is used to update the model based on 

historical data as well as data from matches, thus improving the accuracy of the new model's predictions. Still, 

the model is only 67% accurate, and that's mostly based on the underlying historical data. 

 

 

2. METHODS 

Here, the intent is to investigate whether the players’ location on the court is related to their likelihood of 

success in any given rally. Two key dimensions are of interest: the players’ distances from the centre net and 

centre line.  We utilise computer vision for extracting the physical coordinates of the players on the court from 

broadcast footage (McDonald et. al., 2020). 

 

DATA COLLECTION 

To test the concept of whether player movement impacts their probability of winning a rally, we sourced data 

from the Wimbledon Tennis Tournament. Commonly known as The Championship, this is the oldest tennis 

tournament in the world and arguably the most prestigious.   

Rally outcome and video footage are readily available online from https://www.wimbledon.com/.   The 

data has two forms: already machine readable (information about the match and outcomes) and the footage.  

The footage requires substantial processing to first extract the tennis player’s co-ordinates on court per frame 

and then feature engineering to extract metrics that may be representative of movement. 

 

DATA PROCESSING 

From the Wimbledon.com website, we collected a set of rallies and the corresponding footage.  An important 

step in this process is ensuring the videos are suitable for the machine vision pipeline.  This is dependent on 

factors such as the quality of the footage, height of the camera and stability of the camera. 

Player on court location data was extracted using Play in the Grey’s pipeline.  As each frame is processed, 

time-based data of player movement is generated.  From the initial player detection, shown in Figure 1, initial 

data representing the human perspective is captured. This is then transformed into a top-down view using 

homography as shown in Figures 2 and 3 and explained by McDonald et al. (2020).  Once homography has 

been applied to transform the data we have coordinate tracking of player in a rally, where the two-dimensional 

data is represented as pixels. Pixel coordinates are translated to coordinates on the tennis court using a simple 

transformation as the dimensions of a tennis court are standardised.  As explained on Olympics.com, “a 

competitive tennis court must be rectangular in shape, measuring 23.77 metres long. The width, however, 

differs for doubles (10.97 metres) and singles (8.23 metres).” 

 

DATA DESCIPTION 

To aid in construction a dataset for analytical purposes, the linkage file to connect the machine vision output 

data to the rally outcome data has the following features: 

• Gender: 1=Men, 0=Women 

• Winner: 1=the player is further away from the camera, 0= the player is closer to the camera 

• Server: 1= Far court player, 0 = Close court player 

• TLx, TLy, TRx, TRy, BLx, BLy, BRx, BRy: represent the pixel coordinates (x,y) for the four corners 

(Top\Bottom, Left\Right)  of the Tennis court captured in one frame (can be from any part of the 

video, preferably middle of video). For footage where the camera moves slightly, use a frame which 

captures the most common coordinates of the Court in the video. This is used to convert the x-y data 

from pixels to metres. 

• xyFrameTime: The time stamp for the frame used to determine the court pixel coordinates: TLx, 

TLy,…, BRy (An approximate time when the frame was taken is enough). 

• RallyLength: the length of rally in seconds. 

• CamMvmt: 0 = No camera movement in footage, 1 = Camera movement in footage.  

• MatchName: Name of video used to extract footage 
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Figure 1: Example of humans detected in sample footage from Wimbledon 2020. 

 

Figure 1 shows humans detected in a single frame.  Other features are also detected, such as text and logos.  As 

mentioned previously, to convert these detections into useful data, a homography transformation is applied. 

This can be simply understood as it is used to describe the object's positional mapping relationship between the 

world coordinate system and the pixel coordinate system. 

 

DATA CLEANSING 

Figures 2 and 3 show the output of the detection post homography.  Importantly as shown in Figure 1, many 

humans are detected, some of which remain apparent within the court surrounds in Figure 2 (the left image).  

The following process was undertaken to improve the quality of data. 

1. Remove non-player detections 

2. Remove incorrect player coordinates 

3. Impute missing player coordinates 

4. Removal of due to camera movement issues. 

In Figures 2 and 3, each dot represents a player’s location on the court at each frame (darker dots early in rally, 

lighter dots late in rally).  Comparing the two side-by-side images helps show the visible error values.  This 

includes the umpires at the far end of the court and on the left-hand side.   The two yellow dots at the top of the 

bottom court are post rally.  To clean the data, bounding boxes are used to identify valid coordinates.  

 

FEATURE ENGINEERING 

Using the transformed data, we aggregate data of each player in a rally to obtain the maximum, minimum, 

mean, standard deviation for the following: 

• Distance 

• Speed 

• Acceleration 

• The distance between the player and the net 

• The distance between the player and the centre line 

In all instances, the data is converted to a half court view, so all data is converted.  That is, the top half of the 

court undergoes a 180-degree rotational transformation through the centre of the court and the middle of the 

net. Table 1 lists the features constructed for player per rally along with the description. The prefix for most 

attributes is one of min (minimum), avg (arithmetic mean), max (maximum), std (standard deviation) and the 

refence point for comparison (net as a vertical reference) and centre as a (horizontal reference).  Distance (dist) 

and acceleration are derived from the change in position from frame to frame.  
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Figures 2 & 3: Example of top-down view of detected humans over a series of frames, before (left) and after 

isolation of the tennis players (right). Positioning is represented by pixels. Darker colour indicates closer to 

start of rally and lighter colours closer to the end of the rally. 

 

Variable Description 

min_fromNet minimum distance from net 

avg_fromNet average distance from net 

max_fromNet maximum distance from net 

std_fromNet standard deviation of distance from net 

min_fromCentre minimum distance from centre 

avg_fromCentre average distance from centre 

max_fromCentre maximum distance from centre 

std_fromCentre standard deviation of distance from centre 

avg_dist average distance moved in rally  

max_dist maximum distance moved in rally 

std_dist standard deviation of distance moved 

avg_acceleration average acceleration in rally  

max_acceleration maximum acceleration in rally 

std_acceleration standard deviation of acceleration 

frontHalf proportion of time in front half of court 

backHalf proportion of time in back half of court 

behindLine proportion of time ibehind baseline 

rallyLength time taken to complete rally 

Server binary (server = 1, receiver = 0) 

Table 1: Data features engineered from the data 
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3. RESULTS 

PREDICTIVE MODEL 

We constructed a simple logistic regression model using only the attributes listed in Table 1.  The outcome of 

the rally (1=win, 0=loss) was the dependent variable.  152 rallies with data and corresponding footage were 

available for analysis, which was split in 121 training instances and 31 test cases.   

 

Variable Coefficient 

min_fromNet: -0.766 

min_fromCentre -0.629 

avg_dist -1.050 

Table 2: Statistically significant variables from logistic regression to predict rally outcome based only on 

player movement within a rally. 

 

In testing, the model had an accuracy of 71%.  This suggests that there is sufficient explanatory power for the 

three statistically significant attributes listed in table 2 (at the 5% level of significant).  Importantly, these 

attributes are also practically significant.   Starting with avg_dist which has a negative coefficient.  This 

indicates that the less a player has to move, frame to frame, the greater the chance they have of winning.  As 

this measure is essentially speed (distance for a unit of time), this means that the longer a player must run at 

pace within a rally, the more likely they are to lose.  This potential interpretation is given further weight by the 

first two rows: minimum distance from the net and minimum distance from the centre.  As both coefficients 

are negative, this means that the closer a player gets to the net, or is from the centre, the more likely they are to 

win.  Given the magnitude for the et attribute is larger, this implies that from the sample of 121 rallies used to 

construct the model, getting to the net was more important than being in the middle. 

 

4. DISCUSSION 

Whilst there was no literature available on utilising footage-derived data to predict win probabilities, there are 

still valuable insights we can draw from related literature to achieve our goal. Studies on models that solely 

utilised historical statistics are useful if the project were to incorporate such statistics into the model. Based on 

the findings from Kovalchik and Reid (2019), our model should consider the impact of serving and its 

significant influence on the likelihood of a player winning the rally. This could potentially be implemented 

through determining which player is serving, and initialising appropriate win-expectations based on the 

independent probability of a serving player’s likelihood of winning the rally.  

Following on the idea of utilising a combination of historic statistics and in-game statistics, we could 

extend this to the player movement information derived from the machine vision model and explore domain 

knowledge related to positional advantages in tennis. This would allow us to build a model that could 

determine whether a player’s position on the court at any given time is statistically an advantageous position 

relative to the opposing player’s position on their half of the court.  

There is substantial potential to expand this exploratory analysis by including additional information and 

incorporating the findings from Kovalchik and Reid (2019).  Specific future work includes: expand feature 

selection, use more data from more tournaments and use entire set footage instead of rallies.   

To then expand upon a dynamic probability model, we need to expand feature selection: gender, age of 

player, types of surfaces for tennis courts.  That is, we need to more thoroughly consider features that may 

affect the player’s performance. 

 

5. CONCLUSIONS 

The progress made in machine vision algorithms now allows us to extract vast amounts of data from standard 

game footage which until recently was impracticable at an affordable cost. In creating new predictive models 

using this data, not only would we be able to enhance the experience for spectators, but there is also potential 

to generate an entirely new set of sports statistics using a mixture of domain knowledge and feature 

engineering. Athletes and coaches at various levels of the sport could access in-depth breakdowns and analysis 

that could improve performance and tactics.  

In building the novel prediction algorithm, the study will explore the raw movement data extracted as well 

as using feature engineering to generate new insights that may aid in predicting the winner of a tennis rally. 

The data produced will be used to train and evaluate various machine learning algorithms to determine 

whether the in-game analytics could provide better accuracy over models that solely utilise traditional tennis 

statistics. 
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Abstract 
 

Tennis matches that take much longer than expected are a problem in several ways. They can delay the starting 

time of the following match, cause issues for broadcasters, lead to an increased number of injuries, and decrease 

the winner’s chance of winning in the next round. In this paper several alternative game structures for possible 

use in reducing the length of best-of-5 set matches are studied. Also, criteria for comparing two or more tennis 

match scoring systems are outlined. 
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1. INTRODUCTION   

The uncertain and highly variable length of games, sets and matches in tennis has been a concern for players, 

television, spectators, as well as tournament directors. It remains a concern. 

Some matches have been observed to last more than 5 hours even though the 5th set was not a ‘long’ 

advantage set. For example, in the 2012 Australian Open Final, Djokovic beat Nadal, 5-7, 6-4, 6-2, 6-7, 7-5 in 

5 hours and 53 minutes. Whilst long matches can be exciting as a stand-alone match (as in a final), it can be seen 

as unfair in the tournament setting as the winner can be too exhausted to do justice to his performance in the 

next round. This typically can occur in men’s grand slam singles matches as they play best-of-5 set matches.  

Thus, it would be useful to have a scoring system that reduces the likelihood of such long matches, whilst keeping 

other match characteristics (such as the probability of the stronger player winning) much the same as they are at 

present.  

Over the last several decades a considerable amount of research has been carried out on the match 

characteristics of various tennis scoring systems. When considering alternative scoring systems, it is not 

sufficient to consider just the mean and variance of the duration of a match. Issues related to the skewness of 

this distribution of duration are an important consideration. The probability that the better player wins also needs 

to be considered. Such measures or characteristics are available and are important in deciding whether a scoring 

system is acceptable or not. It is noted that there is typically a need for compromise when considering two or 

more scoring systems, as it is unlikely that one system is best on all such measures. 

   The major purpose of this research is to achieve a greater understanding of the characteristics of several 

match scoring systems using variations of the No-Ad game concept, which was described and studied by Pollard 

and Noble (2004) and is currently used in doubles (excluding grand slams where a standard deuce game is used). 

In the No-Ad game a player needs to win 4 points in order to win the game (and if the score line reaches 3 points-

all in that game, the player who wins the next point wins that game). At most 7 points are played in the No-Ad 

game and this characteristic helps to reduce the skewness of the distribution of duration of a set and match of 

tennis. Some other game scoring systems are also considered in this paper. 

The idea of "deuce" was introduced (at least as far back as 1490) for a simple reason … to ensure that 

the game could not be won by a one-point difference in the players' scores. Deuce was derived from the French 

"a deux du jeu"… two points away from game. It is reasonable to believe that there was no mathematics carried 

out on this deuce game back in 1490 concerning how it would affect the game of tennis into the future (Barnett, 

2012). 

Pollard and Noble (ibid) studied the efficiency and some duration characteristics of a best of 3 sets 

match using the No-Ad game. They also set up the 50-40 game in which server needs to win 4 points in a game 

whilst the receiver needs to win only 3 points to win the game. The concept behind such a game structure was 
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that the server has the advantage of serving within the game but has the disadvantage of needing to win one 

more point than the receiver in order to win. They noted, for example, the increased efficiency of best of 3 set 

tennis scoring when used for ‘strong’ servers as in men’s doubles but did not study the best of 5 set matches, 

which are considered in this paper.   

Recently, Pollard and Barnett (2018) reported on the 50-40 game and a few variations of it within a 

single set of tennis. One variation they studied was the 50-40, 40-0, 40-15 game which is a 50-40 game modified 

so that the server wins the game if the score reaches 40-0 or 40-15. The logic behind a scoring system such as 

this is that there is little point (in terms of efficiency and duration) in playing points that are relatively 

unimportant and unexciting. Further, in their discussion section they suggested a couple of further modifications 

of the 50-40 game that could be usefully studied. In their work they considered just a single set of tennis and 

whilst these single set results give some useful insights into the likely characteristics of a best of 3 or best of 5 

sets match when using such games, the study of a complete match gives greater clarity regarding any preferred 

system. This is done in this paper. 

 

2. METHODS 

 

Alternative game structures to address the problem of ‘long’ best of 5 set matches 

 

In this study we consider the best of 5 tiebreak sets using the two official game scoring systems of the Rules of 

tennis (advantage/deuce games and no ad games) as well as three possible alternatives. 

 

(1) Advantage/Deuce games – a player needs to win 4 points but if the score line reaches 3 points-all, then 

a player must be 2 points ahead to win the game. 

 

(2) No-Ad – a player needs to win 4 points in order to win the game. If the score line reaches 3 points-all, 

the player who wins the next point wins the game. At most 7 points are played in the No-Ad game. 

 

(3) No-Ad* - a player needs to win 4 points but if the score line reaches deuce, then a player must win 2 

more points to win the game. At most 9 points are played in the No-Ad* game. 

 

(4) 50-40 (as defined by Pollard and Noble (ibid)) – the server needs to win 4 points whilst the receiver 

needs to win just 3 points in order to win the game. At most 6 points are played in this type of game.  

 

(5) 50-40* - server needs to win 4 points and receiver needs to win just 3 points but if the score line reaches 

3-2 (40-30) then the player who wins two more points wins the game. At most 8 points are played in 

this game.  

 

Criteria for comparing tennis scoring systems 

 

In this study of the best of 5 tiebreak sets matches for men, where every game is one of the above-mentioned 

game scoring systems, the match characteristics of interest are  

(1) Probability that the stronger player wins, P 

(2) Expected value of number of points played (duration) in the match, E(D)  

(3) Standard deviation of the number of points played in the match, SD(D)  

(4) Efficiency of the scoring system 

(5) Coefficient of skewness of the number of points played in the match, γ = E[ (Z – μ)3]/σ3. 

(6) The 95%, 99% and 99.5% points in the cumulative distribution of duration, denoted by CD95, CD99 

and CD99.5.   

 

Note that the efficiency of the tennis scoring system was devised in a very elegant paper by Roger Miles 

(Miles, 1984). The efficiency of a tennis scoring system with key characteristics P, the probability that the better 

player wins, and m, the mean duration (mean number of points played in the match), is equal to:  

 

(2(P-Q) ln(P/Q)) / (m (pA-pB) ln(pAqB/pBqA)) 

 

where Q = 1-P, pA is the probability player A wins a point on service, pB is the probability player B wins a point 

on service, qA = 1-pA and qB =1-pB. 
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Given two scoring systems with the same mean duration, the one in which the better player A has a 

higher probability of winning has the greater efficiency. Correspondingly, given two scoring systems with the 

same likelihood of the better player winning, the one that has the smaller mean duration has the greater 

efficiency. Note that the efficiencies of tennis scoring systems are typically a lot less than 1 mainly because of 

the nested nature (points, games, sets) of tennis scoring using ‘best of’ structures. Very efficient scoring systems 

do not have ‘best of’ structures. They also have very large variances of duration, and this makes them quite 

inappropriate for scoring in tennis. 

Note that the characteristics CD95, CD99, and CD99.5 should be sufficient for comparing the upper 

tails of the duration distributions, as (only) 127 five-set matches are played each year in each Grand Slam Men’s 

Singles event.  

 

Parameter values 

 

The key input parameters in modelling a men’s singles tennis match between player A and player B are pA = 

probability that player A wins a point on his serve, and pB = probability that player B wins a point on his serve. 

Cross and Pollard (2011) noted that for men singles at the four Grand Slam events in 2008, the 

proportion of points won on service averaged 0.631, 0.621, 0.667 and 0.643 at Australian Open, French Open, 

Wimbledon and US Open respectively. They reported that these values ‘had not changed much over the years 

[1999 to 2009]’, except for the French Open (‘associated with a considerable increase in first service speed’ 

(Cross and Pollard (2009))). As these have an average value of 0.64, this value is used as the most appropriate 

average value for this study. 

In the Cross and Pollard study the proportion of points won on service by the winner minus the 

proportion won on service by the loser was 0.11. This figure is biased in favour of the winner. For example, 

using simulation methods in a study of bias in sporting statistics, Pollard et al (2010) noted…“As the winner 

must have won the last point, last game and last set, the winner’s service statistics can have an upwards bias, 

and the loser’s service statistics a downwards bias.”, and…”In the best of three tiebreak sets match between two 

equal players (with pA = pB = 0.65), the proportion of points won on service by the eventual winner is shown to 

be about 0.065 on average greater than the proportion of points won on service by the loser. For a best of five 

tiebreak sets match between these two equal players, this difference is shown to average about 0.049.” 

It is important that such biases are considered when working with reported statistics. We have done this 

in deciding the parameters to use in our study. 

  Taking 0.04 as a reasonable difference between the serving p-values in a ‘moderately close’ match, 

appropriate values for the parameters in a typical or average men’s singles match are pA = 0.66, pB = 0.62. 

It is noted here that, in an article using data from the 2016 Rio Olympics, Carl Bialik (2016) concluded 

that the service success rates for men’s singles was 63%.  It is noted that this percentage is quite similar to the 

figure above, and to the assumptions we make in our modelling. 

It was anticipated that whilst no scoring system would be ‘best’ with respect to all characteristics, one 

scoring system might in some sense be best “overall’. 

 

Method of Analysis 

 

Most of these results are numerically exact and were developed using recursive formulas in an Excel spreadsheet 

(Barnett, 2016). The theory behind the recursive formulas is now outlined. 

To analyse the progress of a match we denote by Z the total number of points played to date.  Z is a 

discrete random variable with density f(z).  The moment generating function of Z is   

MZ(t) = E(etZ) = ∑ 𝑒𝑡𝑧𝑧  f(z). 

 

In a singles match there are two players, denoted by A and B, and the serve is rotated between player A and 

player B according to prescribed rules.  Now Z = X + Y, where X is the number of points served by player A, 

and Y is the number of points served by player B.  We make an important assumption that X and Y are 

independent random variables, i.e. the serving strength of player A does not influence the serving strength of 

player B, and vice versa.  It follows from this that the joint distribution of these variables can be factorised.  

F(X,Y) = F1(X) * F2(Y) 

 

Using this independence of X and Y,  we obtain MZ(t) = MX(t)MY(t) as in Parzen(1960) 

The formulas for extracting the moments of the sum of independent random variables is the following:  
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m1Z = m1Y + m1X  

m2Z = m2Y + 2m1Xm1Y + m2X 

m3Z = m3Y + 3m1Xm2Y + 3m2Xm1Y + m3X 

m4Z = m4Y + 4m1Xm3Y + 6m2Xm2Y + 4m3Xm1Y + m4X 

 

These expressions are obtained by successive differentiation the moment generating function with respect to t, 

and putting t to 0. 

The score for a match in progress will be denoted by (a, b : c, d : e, f), where (a, b) is the score in points, 

(c, d) is the score in games, and (e, f) is the score in sets, for player A and player B respectively. We will use a 

truncated form of this notation whenever it is convenient so to do. 

A tennis match consists of four levels - (points, games, sets, match). It becomes necessary to represent: 

points in a point as pp,  

points in a game as pg,  

points in a tiebreak game as pgT, 

points in a tiebreak set as psT  

points in a best of 5 all tiebreak set match as pm5T. 

 

Let sA, sB represent the condition that player A and player B, respectively served first at the beginning 

of a set. Let cA, cB represent the condition that player A and player B, respectively are currently serving in the 

set at the score (a, b : c, d). If (a, b) is not a boundary score for the current game then  

sA = cA and sB = cB, if (c + d) mod 2=0 

sA = cB and sB = cA, if (c + d) mod 2=1  

except in the case of the tiebreak game of the tiebreak set, with c = 6, d = 6, when  

sA = cA and sB = cB, if (a + b) mod 4=0 or 3  

sA = cA and sB = cB, if (a + b) mod 4=1 or 2 

 

Let PpsT(a, b : c, d|sA) represent the probability of player A winning a tiebreak set at this score, and 

player A serving first in the current set. Let YpsT(a, b : c, d|sA) be the number of points remaining in the set at 

this score with player A serving first in the current set. This number is a random variable. Let   MYpsT(a,b:c,d|sA)(t) 

be its moment generating function. 

Similarly let PpsT(a, b : c, d|wA, sA) represent the probability of player A winning a tiebreak set at this 

score, and player A serving first in the current set. Let YpsT(a, b : c, d|wA, sA) be a random variable of the number 

of points remaining in the set at this score conditional on player A both winning the set, and serving first in the 

current set. Let MYpsT(a,b:c,d|wA,sA)(t) be its moment generating function conditional on player A both winning the 

set, and serving first in the current set. 

Many variants of this notation will be used. The representation of the score will be restricted whenever 

it is not essential to display the full score. Other symbols include B for player B, l for the condition of losing, 

and n for the condition of serving next. 

The next step is to introduce weighted moment generating functions. Let X be a conditional random 

variable. Let C be the condition that X occurs with probability pX.  

 

Then  

WX|C(t) = pXMX(t)  

 

This product of a probability and its associated moment generating function is defined as a weighted 

moment generating function. The weight is the probability measure such that the conditions applied to the 

random variable are true. 

 

Denote by wnX the weighted nth moment of the random variable X. Then  

wnX = pXmnX for n = 1, 2, 3, 4, ... 

 

The more important situation for us arises when the score does change. Let X and Y be independent 

random variable with conditional probabilities pX and pY, respectively, of occurring. Let Z denote the random 

variable for their sum, Z = X + Y when both X and Y occur. Then pZ = pXpY. It follows from the formula for 

moment generating functions that the weighted moment generating functions satisfy  

WZ|C1,C2 (t) = WX|C1(t)WY|C2(t). 
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The formulas for extracting the weighted moments are the following:  

pZ = pXpY  

w1Z = pXw1Y + w1XpY  

w2Z = pXw2Y + 2w1Xw1Y + w2XpY  

w3Z = pXw3Y + 3w1Xw2Y + 3w2Xw1Y + w3XpY  

w4Z = pXw4Y + 4w1Xw3Y + 6w2Xw2Y + 4w3Xw1Y + w4XpY 

 

We now develop the algebra for weighted moment generating functions. We are able to add together 

two weighted moment generating functions whenever we encounter two mutually exclusive cases. Two simple 

examples where the score does not change are:  

(a) Condition on initial server  

WYpsT(a,b:c,d)(t) = WYpsT(a,b:c,d|sA)(t) + WYpsT(a,b:c,d|sB)(t)  

 

(b) Condition on winning or losing  

WYpsT(a,b:c,d|sA)(t) = WYpsT(a,b:c,d|wA,sA)(t) + WYpsT(a,b:c,d|lA,sA)(t)  

 

We now apply these ideas to the playing of a single point. In this case some of the notation appears to 

degenerate, so we must be careful. However, this analysis will be used whenever the score changes as a point is 

played in a game, a set, or a match. 

Each point played is a single point, irrespective of the score. For player A serving, the probability of 

winning the point is denoted by pA irrespective of the score and qA = 1−pA. Let Ppp(()|cA, wA) and                  

Ppp(()|cA, lA) represent the probabilities of player A winning and losing a point on serve respectively from score 

line () within the point. It follows that:  

Ppp(()|cA, wA) = pA  

Ppp(()|cA, lA) = qA 

 

Let Ypp(()|cA) represent the number of points remaining in the point from score line () with player A 

serving. Each point played is a single point, so Ypp(()|cA) = 1. Let Ypp(()|cA,wA) and Ypp(()|cA,lA) represent the 

number of points remaining in the point from score line () given player A won and lost the point respectively 

with player A serving. 

 

Therefore:  

MYpp(()|cA)(t) = E(e Ypp(()|cA)t ) = E(et) = et  

WY pp(()|cA,wA)(t) = Ppp(()|cA,wA)MY pp(()|cA)(t) = pAe t  

 

This is a fundamental brick in the model. 

 

It is easy to check that  

wn(Ypp(()|cA, wA)) = pA for n = 0, 1, 2, 3, 4, ... 

 

Likewise WYpp(()|cA,lA)(t) = Ppp(()|cA, lA)MYpp(()|cA)(t) = qAE(et) 

 

and  

wn(Ypp(()|cA, lA)) = qA for n = 0, 1, 2, 3, 4, ... 

 

a) Number of points in a game  

Let WYpg(a,b|cA,wA)(t) and WYpg(a,b|cA,lA)(t) represent the weighted moment generating functions of the number of 

points remaining in the game from score line (a, b) given player A is serving and player A won and lost the game 

respectively. 

 

Theorem. 

WYpg(a,b|cA,wA)(t) = WYpp(()|cA,wA)(t)WYpg(a+1,b|cA,wA)(t) + WYpp(()|cA,lA)(t)WYpg(a,b+1|cA,wA)(t) 

 

Proof. MYpg(a,b|cA,wA)(t) = E(e tY pg(a,b|cA,wA)) is an expectation that is calculated before the point at score (a, b) has 

been played. The point played is won and lost with probability pA and qA respectively, where    pA+qA=1 since 

there are only two possible outcomes. When we try to recalculate the original expectation after the point has 

been played, we obtain the weighted sum of two expressions 
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MYpg(a,b|cA,wA)(t)  

= pAE(et(1+Y pg(a+1,b|cA,wA)))Ppg(a + 1, b|cA, wA)/Ppg(a, b|cA, wA)  

+qAE(et(1+Y pg(a,b+1|cA,wA)))Ppg(a, b + 1|cA, wA)/Ppg(a, b|cA, wA) 

 

where the odds ratios  

Ppg(a + 1, b|cA, wA)/Ppg(a, b|cA, wA) and Ppg(a, b + 1|cA, wA)/Ppg(a, b|cA, wA) reflect the changes in the chances of 

player A winning when the score is updated after winning or losing the point, respectively. The count of 1 for 

the point played is independent of the distribution of the remaining points after the point has been played, so, as 

for moment genrating functions, we can factorize the expectations to obtain  

E(et(1+Y pg(a+1,b|cA,wA))) = E(et)E(et(Y pg(a+1,b|cA,wA))) and  

E(e t(1+Y pg(a,b+1|cA,wA))) = E(et)E(et(Y pg(a,b+1|cA,wA))). 

 

After some rearrangement we find that  

Ppg(a, b|cA, wA)MYpg(a,b|cA,wA)(t)  

= pAE(et)Ppg(a + 1, b|cA, wA)E(et(Y pg(a+1,b|cA,wA)))  

+qAE(et)Ppg(a, b + 1|cA, wA)E(et(Y pg(a,b+1|cA,wA))) 

The only step that is left is the identification of the various terms in this expression as weighted moment 

generating functions, to obtain  

WYpg(a,b|cA,wA)(t)=WYpp(()|cA,wA)(t)WYpg(a+1,b|cA,wA)(t)+WYpp(()|cA,lA)(t)WYpg(a,b+1|cA,wA)(t) 

 

Note carefully in this result how first we are able to multiply the weighted moment generating functions 

on each path of this branching process which arises when scoring, because the steps on each branch are 

independent; and then add the results of this multiplication, because the paths are mutually exclusive. 

It follows that WYpg(a,b|cA,wA)(t) = Ppg(a, b|cA, wA)MY pg(a,b|cA,wA)(t) 

where MYpg(a,b|cA,wA)(t) is the moment generating function of the random variable Ypg(a, b|cA, wA). 

By successive differentiation with respect to t from the Theorem, and setting t = 0 we obtain the 

following recurrence formulas. 

 

w1(Ypg(a, b|cA, wA)) = pAw1(Ypg(a+ 1, b|cA, wA)) +qAw1(Ypg(a, b+ 1|cA, wA)) +pAPpg(a+ 1, b|cA, wA) +             qAP 
pg(a, b + 1|cA, wA)  

 

w2(Ypg(a, b|cA, wA)) = pAw2(Ypg(a+1, b|cA, wA))+qAw2(Ypg(a, b+1|cA, wA))+2pAw1(Ypg(a+ 1, b|cA, wA)) + 

2qAw1(Ypg(a, b + 1|cA, wA)) + pAPpg(a + 1, b|cA, wA) + qAPpg(a, b + 1|cA, wA)  

 

w3(Ypg(a, b|cA, wA)) = pAw3(Ypg(a+1, b|cA, wA))+qAw3(Ypg(a, b+1|cA, wA))+3pAw2(Ypg(a+ 1, b|cA, wA)) + 

3qAw2(Ypg(a, b+ 1|cA, wA))+3pAw1(Ypg(a+ 1, b|cA, wA))+3qAw1(Ypg(a, b+ 1|cA, wA)) + pAPpg(a + 1, b|cA, wA) + 

qAPpg(a, b + 1|cA, wA)  

 

w4(Ypg(a, b|cA, wA)) = pAw4(Ypg(a+1, b|cA, wA))+qAw4(Ypg(a, b+1|cA, wA))+4pAw3(Ypg(a+ 1, b|cA, wA)) + 

4qAw3(Ypg(a, b+ 1|cA, wA)) + 6pAw2(Ypg(a+ 1, b|cA, wA)) + 6qAw2(Ypg(a, b+ 1|cA, wA))+4pAw1(Ypg(a+1, b|cA, 

wA))+4qAw1(Ypg(a, b+1|cA, wA))+pAPpg(a+1, b|cA, wA)+ qAPpg(a, b + 1|cA, wA) 

 

Boundary Values:  

wn(Ypg(a, b|cA, wA)) = 0, if a = 4 and 0 ≤ b ≤ 2; b = 4 and 0 ≤ a ≤ 2 

w1(Ypg(3, 3|cA, wA)) = 2p2
A/(2p2

A−2pA+1)2 

w2(Ypg(3, 3|cA, wA)) = 4p2
A(1−2p2

A+2pA) / (2p2
A−2pA+1)3 

w3(Ypg(3, 3|cA, wA)) = 8p2
A(4p4

A−8p3
A−4p2

A+8pA+1)/(2p2
A−2pA+1)4 

w4(Ypg(3, 3|cA, wA)) = 16p2
A(1−2p2

A+2pA)(4p4
A−8p3

A−16p2
A+20pA+1)/(2p2

A−2pA+1)5 

 

Similar recursion formulas with boundary values can be obtained for wn(Ypg(a, b|cA, lA)). 

 

Let MYpg(a,b|cA)(t) represent the moment generating function of the number of points remaining in a game at point 

score (a, b) for player A serving. 
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Using the rule for combining weighted moment generating functions with mutually exclusive 

conditions we obtain MYpg(a,b|cA)(t) = WYpg(a,b|cA,wA)(t) + WYpg(a,b|cA,lA)(t) since the probability that a game will 

eventually end is 1. 

Converting moments to parameters of distribution (mean, variance, coefficients of skewness and excess 

kurtosis) can readily be obtained. 

 

Similar formulas and parameters of distribution can be obtained for when player B is serving such that 

WYpg(a,b|cB,wB)(t) and WYpg(a,b|cB,lB)(t) represent the weighted moment generating functions of the number of points 

remaining in the game from score line (a, b) given player B is serving and player B wins and loses the game 

respectively. 

 

b) Number of points in a tiebreak game  

The analysis of a tiebreak game is similar to that of a standard game except that it is necessary to allow 

for the rotation of service before each odd point in the tiebreak game. 

 

c) Number of points in a tiebreak set 

We study here the model for a tiebreak set. To account for the rotation of service in this type of set it is 

necessary to allow for the rotation of server at the beginning of each game. Using this convention, whenever a 

tiebreak game is required to resolve the winner of the set, this tiebreak game is marked to the server of the first 

point of the game, and hence to the server of the first point of the set when it comes to determining the first 

server of the next set. This rule applies irrespective of the outcome of the tiebreak game. 

For player A serving in the first game of the set there are four cases to be dealt with separately. Consider 

the case where player A not only serves in the first game of the set, but wins the set, and serves in the first game 

of the next set. 

Let WYpsT (0,0:c,d|sA,wA,nA)(t) represent the weighted moment generating function of the number of points 

remaining in a tiebreak set at point and game score (0, 0 : c, d) given player A served first, wins the set and is 

serving first in the next set to be played. Then by considering a complete game being played at that score we 

obtain, for c + d < 12 

 

WYpsT(0,0:c,d|sA,wA,nA)(t)=WYpg(0,0|cA,wA)(t)WYpsT(0,0:c+1,d|sA,wA,nA)(t)+WYpg(0,0|cA,lA)(t)WYpsT(0,0:c,d+1|sA,wA,nA)(t), for        (c 

+ d) mod 2=0  

 

WYpsT(0,0:c,d|sA,wA,nA)(t)=WYpg(0,0|cB,lB)(t)WYpsT(0,0:c+1,d|sA,wA,nA)(t)+WYpg(0,0|cB,wB)(t)WYpsT(0,0:c,d+1|sA,wA,nA)(t), for        (c 

+ d) mod 2=1 

 

There is a special case for the tiebreak game, with c = 6, d = 6, where due to the rotation of serve player A cannot 

serve first in the next set, so  

WYpsT (0,0:6,6|sA,wA,nA)(t) = 0, which simplifies to WYpgT (0,0|cA,wA)(t)=0 

 

d) Number of points in a best of 5 all tiebreak set match  

Because we have to take into account both the winner of the current set and the server at the start of the next 

set, the recurrence formulas have to allow for four-way branching rather than the two-way branching that we 

have previously met. 

 

For player A winning the match and currently serving, 

WYpm5T(0,0:0,0:e,f|cA,wA)(t)=WYpsT(0,0:0,0|sA,wA,nA)(t)WYpm5T(0,0:0,0:e+1,f|cA,wA)(t)+WYpsT(0,0:0,0|sA,lA,nA)(t)                                 

WYpm5T(0,0:0,0:e,f+1|cA,wA)(t)+WYpsT(0,0:0,0|sA,wA,nB)(t)WYpm5T(0,0:0,0:e+1,f|cB,wA)(t)+WYpsT(0,0:0,0|sA,lA,nB)(t)               

WYpm5T(0,0:0,0:e,f+1|cB,wA)(t) 

 

The total number of points played in a tennis match has a discrete distribution. The moments of this 

distribution can be calculated using a lattice model with the Markov property and a few other modest 

assumptions. The Normal distribution has been widely studied, and tables of the probabilities for this distribution 

are readily available. The basic idea of the Normal Power approximation is to use these probability tables to 

estimate the tail probabilities of other distributions. This method uses the first four moments and produces a 

continuous approximation to the cumulative distribution.  
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The Normal Power approximation has a weakness in that it can fail when fitting distributions that have 

exponential tails.  This weakness is exposed when attempting to fit the distribution of points in an advantage set 

where the number of games is not finite. 

The Normal Power approximation has another weakness in that it can fail when fitting distributions 

that are multimodal.  Therefore, special steps must be taken when estimating the distribution of points in a tennis 

match. The key observations are that the distribution of points in a tie-breaker set is unimodal, and the number 

of games is finite.  The Normal Power approximation can be safely used to estimate this distribution.  The quality 

of this estimate can be checked using simulation. The distribution of points in 3 set endings, 4 set endings and 5 

set endings are each unimodal in a best of 5 set all tie-breaker match, as they inherit the properties of a single 

tie-breaker set.  Each of these distributions can be estimated, and the distribution of points for the complete 

match can be obtained by weighed addition, where the weights to be used are the probabilities of each type of 

ending. 

 

Let X be a random variable with a cumulative distribution F(x), so that P(X ≥ x) = F(x) 

 

Let µ, σ, γ1, γ2 be the mean, standard deviation, skewness and excess kurtosis of X. Let Z be a standardized 

random variable with mean 0 and standard deviation 1, with 

 

P(Z ≥ z) = P(X ≥ x) 

 

Denote the cumulative Normal distribution by φ(.). Then the Normal Power approximation can be written as 

 

F(x) ≈ φ(y) 

 

with  

z = (x−µ)/σ 

 

and 

y = z − 1/6 γ1(z2 − 1) – 1/24 γ2(z3 − 3z) + 1/36 γ1
2 (4z3 − 7z) 

  

3. RESULTS 

1. Firstly, we consider an ‘average’ or ‘typical’ men’s singles match with pA = 0.66 and pB = 0.62. These 

(pA, pB) parameters represent an ‘average’ match in Grand Slam men’s tennis and are particularly 

relevant for the US Open or Australian Open. The results for such a match are given in Table 1 for 

player A serving first in the match. Columns 2-6 in the tables are exact results (from the methodology). 

They were checked against the equivalent (exact) best of 3 tiebreak sets results in Pollard (1983). 

 

B5 sets P(A wins) Mean Efficiency Stand Dev Skew CD95 CD99 CD99.5 

Ad games 0.734 261.22      0.52 61.26 0.14 362 394 405 

No-Ad  0.719 232.13      0.51 53.23 0.11 319 346 354 

No-Ad* 0.728 247.58      0.52 57.15 0.12 341 370 379 

50-40  0.718 198.50      0.59 46.27 0.13 274 299 307 

50-40* 0.730 217.55      0.61 51.29 0.14 302 329 339 

 Table 1 Characteristics of a best of 5 tiebreak sets match when pA=0.66 and pB=0.62 

 

The more relevant observations that can be made from Table 1 include 

1. The 50-40 and 50-40* games, whilst producing more efficient match systems than the other game 

structures, reduce the mean duration by an amount that would appear to be excessive and undesirable 

for Grand Slam tennis. 

2. The probability that player A wins the match is slightly reduced (relative to Ad games) when No-Ad* 

is used and reduced further under the No-Ad system. 

3. The No-Ad and No-Ad* games produce similar efficiencies to the present matches using the Ad game. 

They reduced the means, the standard deviations, the skewness and the CDs. 

4. The No-Ad* game produces a best of 5 set scoring system with characteristics roughly midway between 

those of the Ad game and the No-Ad game. Its mean duration is 13.6 points fewer than the present 

system, and its CD99.5 is 26 points smaller. It might be considered a useful solution to the issue being 

studied in this research. 
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2. Secondly, we consider a men’s singles Grand Slam match in which the advantage of serving for both 

players are less than the Grand Slam average. These parameters could represent a typical match at the 

French Open between two players with weaker or less successful serves. Table 2 gives the relevant 

characteristics. 

 

B5 sets P(A wins) Mean Efficiency Stand Dev Skew CD95 CD99 CD99.5 

Ad games 0.741 260.68      0.58 61.82 0.15 363 396 407 

No-Ad  0.721 229.69      0.55 52.92 0.11 316 343 352 

No-Ad* 0.732 245.74      0.57 57.13 0.13 340 368 378 

50-40  0.715 196.29      0.60 45.68 0.13 271 295 304 

50-40* 0.728 215.15      0.63 50.71 0.14 299 326 335 

Table 2 Characteristics of a best of 5 tiebreak sets match when pA=0.62 and pB=0.58 

 

Whilst all of the observations made with respect to Table 1 apply also to Table 2, perhaps the most 

relevant comparison is the observation that P(A wins) decreases for both the 50-40 and the 50-40* games relative 

to Table 1 (whilst it increases for the other types of games). This is not a surprise as the advantage of serving is 

reduced with these parameter values.  

 

3. Thirdly, we consider a men’s singles Grand Slam match in which the advantage of serving is greater 

than average. These parameters could represent a typical match at Wimbledon between two players 

with stronger or more successful serves. 

 

 

B5 sets P(A wins) Mean Efficiency Stand Dev Skew CD95 CD99 CD99.5 

Ad games 0.725 263.30      0.45 60.98 0.12 364 394 404 

No-Ad 0.717 236.11      0.46 53.86 0.11 324 350 359 

No-Ad* 0.723 251.03      0.46 57.50 0.11 345 373 382 

50-40 0.721 201.50      0.57 46.97 0.13 279 303 312 

50-40* 0.732 220.49      0.57 51.87 0.14 306 334 343 

Table 3 Characteristics of a best of 5 tiebreak sets match when pA=0.70 and pB=0.66 

 

Whilst all of the observations made with respect to Table 1 apply also to Table 3, perhaps the most 

relevant comparison is the observation that P(A wins) increases for both the 50-40 and the 50-40* games relative 

to Table 1 (whilst it decreases for the other types of games). This is not a surprise as the advantage of serving is 

enhanced with these parameter values.  

 

4, CONCLUSIONS  

The statistical characteristics of five different best of 5 tiebreak sets scoring systems have been studied. The aim 

of the study was to see whether there was an alternative to the present system using advantage games that might 

lead to less occurrences of very long matches and thus might be of use in Grand Slam tennis. Several measures 

for comparing tennis scoring systems have been outlined. 

The effect of five different types of games within the best of five sets structure has been analysed. The 

types of games included the Ad game and the No-Ad game as defined in the Rules of Tennis. The No-Ad* game 

was also considered. In this game the best of three points is played if deuce is reached. The 50-40 game in which 

the server needs to win 4 points whilst the receiver needs to win just 3 points in order to win the game, was also 

considered.  The 50-40* game, a modification of the 50-40 game in which the best of 3 points is played if 40-

30 is reached, was also considered. 

Whilst the 50-40 and 50-40* games were shown to be typically quite efficient for many matches and 

very effective at reducing match length, they would appear to ‘go too far’ for consideration at the Grand Slam 

level. Further, they may appear problematic to some players due to their ‘unbalanced’ structure. 

The No-Ad*, having characteristics somewhere between the Ad game and the No-Ad game resulted in a useful 

decrease in the number of very long best of 5 tiebreak sets matches. It would appear to be a useful addition to 

available tennis scoring systems.    
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Abstract 
 
In Grand Slam Main Draw tennis matches, tennis balls are replaced after the first seven games and thereafter 
every nine games (ITF, 2022). Over the duration of these seven/nine games, tennis balls degrade (Steele, 2006). 
A prominent feature of this degradation process is the change in ball “fluffiness”, which is attributed to the fibres 
on the surface of a tennis ball standing up after repeated ball impacts and in doing so changing the aerodynamic 
characteristics of the tennis ball (Mehta, 2001). Specifically, it has been demonstrated that the fluff on a tennis 
ball has a major influence on a tennis ball’s drag coefficient. The tennis ball drag coefficient is a dimensionless 
constant used to quantify the drag resistance through air of a moving ball, as defined within established tennis 
ball trajectory equations of motion (Cross, 2020). Using Hawk-Eye spatiotemporal ball motion tracking data 
collected from the 2022 Australian Open, this study presents methods to deconstruct ball trajectory time histories 
into equations of motion to estimate the variation in the drag coefficient throughout the duration of a tennis 
match. Using these methods and focusing on the serve, it was found that in general there was a gradual increase 
in the ball drag coefficient with usage, followed by a noticeable step change reduction in the drag coefficient at 
the changeover between old and new balls. The presented methods and findings can be used by a variety of 
tennis stakeholders, including tennis ball manufacturers/tournament organisers to monitor the degradation of 
tennis balls during tournament match play; and tennis players/coaches wishing to better understand the expected 
change in ball behaviour after the match umpire announces for “new balls, please”. 
 
Keywords: Tennis ball, drag coefficient, fluffiness, ball trajectory, spatiotemporal data 
 
1. INTRODUCTION 
 
As per the official International Tennis Federation (ITF) rule book for Grand Slam tennis events, six tennis balls 
are provided for each Main Draw tennis match, which are then replaced with new balls after the first seven 
games (including warm-up) and thereafter every nine games (ITF, 2022). The changeover to new balls is 
announced by the chair umpire, prompting the opening of the vacuum sealed cans containing the new balls. The 
significance of this change to new balls is highlighted by the accepted tennis etiquette for the server of the next 
game to hold the ball aloft and make the receiver aware of the incoming new balls. 

Over the duration of game play, new tennis balls will degrade due to a combination of factors (Steele, 2006). 
A major contributing factor to ball wear is repeated ball impacts with the racket and the court during play. Ball 
wear can be materialised through a decrease in ball stiffness, loss of ball mass and most notably the change in 
surface condition of the ball. The change in surface condition is commonly referred to as ball “fluffiness” and is 
attributed to the fibres on the surface of a tennis ball standing-up after repeated ball impacts and in doing so 
changing the aerodynamic characteristics of the tennis ball (Mehta, 2001). 

One of these aerodynamic properties is the tennis ball’s drag coefficient; a dimensionless constant used to 
quantify the drag resistance through air of a moving ball, as defined within established tennis ball trajectory 
equations of motion (Cross, 2020). An increase in a tennis ball’s drag coefficient results in the ball slowing down 
through the air, causing the ball to land at a shallower distance into the court and extending the required reaction 
time of the receiver. 

Measuring a ball’s drag coefficient can be accurately calculated under controlled wind tunnel test 
environments, such as the testing arrangements used in Mehta (2001) and Goodwill (2004). The estimated drag 
coefficient of new tennis balls from these studies were found to be in the range of 0.6 to 0.7. The testing by 
Mehta (2001) indicated that partially worn tennis balls resulted in an increase in drag coefficient, however both 
Mehta (2001) and Goodwill (2004) also found that heavily worn tennis balls resulted in a decrease in drag 
coefficient relative to new tennis balls. Flow visualisation studies by Mehta (2001) indicated that for tennis ball 
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speeds representative of match-play, the ball exhibited behaviour consistent with the transcritical flow regime 
(approaching independence of Reynolds Number) which is supported by the finding in both Mehta (2001) and 
Goodwill (2004) that the drag coefficient was generally independent of speed, with only a small decline with 
increasing ball velocity. This small decline in drag coefficient has been attributed to the flattening of the fibres 
on the surface of a tennis ball with increasing ball speed. Goodwill (2004) also investigated the effect of a 
spinning tennis ball, identifying an increase in drag coefficient associated with increasing spin rates. 

Cross (2014) attempted an alternative approach to wind tunnel testing by firing new tennis balls from a ball 
launcher and measuring the speed of the balls at defined locations using video cameras, and then estimating the 
drag coefficient based on the trajectory equations of motion. The study found significant shot-to-shot variation 
in the measured drag coefficient, with measurements ranging between 0.45 to 0.57. However, the measurements 
remained lower than the drag coefficients derived from wind tunnel tests. The study also found that the drag 
coefficient was independent of the tennis ball speed and spin (in contrast to the wind tunnel studies). 

A similar approach is required to measure a tennis ball’s drag coefficient in tournament match play via the 
use of spatiotemporal ball motion tracking data. Choppin (2018) attempted to measure tennis ball drag 
coefficients using Hawk-Eye tracking data from Davis Cup and Fed Cup matches. Using the Hawk-Eye data, 
Choppin (2018) calculated the average horizontal deceleration of the tennis ball in the period from racket impact 
until contact with the court. The method made several simplifying assumptions, most notably not capturing the 
effect of spin. However, the findings of the study did estimate a 4% increase in the drag coefficient for used 
balls relative to new balls. 

This study extends the methods used in Cross (2014) and Choppin (2018), by estimating the drag coefficient 
of a tennis ball from fitting trajectory equations of motions in 3 degrees of freedom to Hawk-Eye trajectory time 
histories. Importantly, these trajectory equations of motion also account for both topspin and sidespin, extending 
the application of the methods to any arc trajectory encountered in a tennis rally. 
 
2. METHODS 
 
The following presents a methodology to minimise the difference between the ball trajectory measured by 
spatiotemporal data and that predicted by equations of motion, and in doing so enable the prediction of ball 
motion properties including the ball drag coefficient from tournament match play. 
 
SPATIOTEMPORAL DATA 
For this study, Tennis Australia have provided access to Hawk-Eye spatiotemporal ball tracking data from the 
2022 Australian Open (Men’s and Women’s Singles). The provided Hawk-Eye data enables the computation of 
the time varying motion of a tennis ball in 3 degrees of freedom, as per the global coordinate system presented 
in Figure 1. Considering a defined time-step, the location of the tennis ball in the X-Y-Z coordinate space as 
predicted by the Hawk-Eye system can be identified at discrete moments in time. 
 

 
Figure 1: Global Coordinate System 
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EQUATIONS OF MOTION 
The trajectory of a tennis ball can be calculated based on the gravitational and aerodynamic forces acting on a 
tennis ball (Cross, 2020) and assuming no other external forces, e.g. wind. From Cant (2020), this force balance 
in 3 degrees of freedom can result in the derivation of the following equations of motion for the trajectory of a 
ball: 
 

𝑑𝑣!
𝑑𝑡$ = 	−𝑘𝑣 )𝐶"𝑣! −

𝐶#
𝜔 ,𝜔$𝑣% −𝜔%𝑣$-. (1) 

𝑑𝑣$
𝑑𝑡$ = 	−𝑘𝑣 )𝐶"𝑣$ −

𝐶#
𝜔
(𝜔%𝑣! −𝜔!𝑣%). (2) 

𝑑𝑣%
𝑑𝑡$ = 	−𝑔 − 𝑘𝑣 )𝐶"𝑣% −

𝐶#
𝜔 ,𝜔!𝑣$ −𝜔$𝑣!-. (3) 

 
where: 
 𝑣 = the absolute velocity of the tennis ball 
 𝑣! , 𝑣$, 𝑣% = the velocity of the tennis ball in the X, Y, Z axes respectively 
 𝜔 = the absolute angular velocity of the tennis ball 
 𝜔! , 𝜔$, 𝜔% = the angular velocity of the tennis ball in the X, Y, Z axes respectively 
 𝑔 = gravitational acceleration 
 𝑘 = ball constant 

𝐶" = drag coefficient 
𝐶# = lift coefficient 

 
The ball constant 𝑘 is defined as: 
 

𝑘 = 	
𝜌𝜋𝑅&

2𝑚  (4) 

 
where: 
 𝜌 = density of air 

𝑅 = radius of tennis ball 
𝑚 = mass of tennis ball 

 
The drag coefficient, 𝐶", is assumed independent of speed and spin (Cross, 2014). However, there is potentially 
some variation with Reynolds Number and Spin Parameter (Goodwill 2004). The lift coefficient, 𝐶# , has been 
found to be linearly proportional to the Spin Parameter, 𝑆 (Cross, 2014): 
 

𝐶# = 𝐶#' 	𝑆 (5) 
where: 

𝑆 =
𝑅𝜔
𝑣  (6) 

 
The equations of motion, Eq. (1)-(3), can be solved numerically based on an assumed set of initial conditions: 

• An initial ball position in X, Y, Z coordinate space, 𝑥(, 𝑦(, 𝑧(. 
• An initial ball speed, 𝑣(. 
• Ball topspin, 𝜃, and sidespin, 𝜑, assumed constant through the trajectory. 
• An initial launch angle 𝛽( (relative to the horizontal plane) and launch heading, γ( (relative to the 

vertical plane) to translate the initial ball speed and spin into translational and rotational components 
in the X, Y, Z axes, 𝑣!(, 𝑣$(, 𝑣%(, 𝜔!(, 𝜔$(, 𝜔%(. 

 
The translation of the ball topspin and ball sidespin into the rotational velocities required by Eq. (1)-(3), is 
achieved by the following transformation (Ivanov, 2021): 
 

𝜔! = 𝜑 sin(𝛽) (7) 
𝜔$ = 𝜃 cos(𝛾) − 𝜑 cos(𝛽) sin(𝛾) (8) 
𝜔% = 𝜃 sin(𝛾) + 𝜑 cos(𝛽) cos(𝛾) (9) 
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OPTIMISATION 
Assuming a fixed time-step, Eq. (1)-(3) can be solved numerically based on an assumed set of initial conditions 
for every arc trajectory of a tennis ball (e.g. from racket contact to impact with court, or from bounce off the 
court to racket contact). The initial ball position 𝑥(, 𝑦(, 𝑧(, as well the initial launch angle 𝛽(	and heading γ( can 
be derived from the Hawk-Eye ball trajectory data. However, the numerically solved trajectory can be varied 
based on the selection of the initial ball speed 𝑣(, the topspin 𝜃, the sidespin 𝜑, the drag coefficient 𝐶", the lift 
coefficient 𝐶# and the ball constant 𝑘. The ball constant 𝑘 can be assumed based on the manufacturer 
specification for the ball properties (mass and diameter), whilst acknowledging there may be small variation 
from ball to ball. The remaining 5 parameters can be passed into an optimisation algorithm to minimise the 
mean-absolute-error between the Hawk-Eye trajectory and the numerically derived trajectory across all time-
steps of the trajectory arc. This minimising optimisation was done using the SciPy python package, 
implementing the “Powell” method that is based on the methods from Powell (1964). 

This optimisation can be done on every arc trajectory defined in the Hawk-Eye data. However, for the 
purposes of investigating the drag coefficient and specifically the new ball effect, this study investigated the 
predicted drag coefficient on serves greater than 50 m/s (180 km/h) in Men’s Singles matches. The intention of 
this restriction is to isolate the data set to fast flat serves only, removing any potential dependency of speed and 
spin on the drag coefficient. Focusing the study on a specific shot type will assist in isolating variation in drag 
coefficient to ball degradation. Further investigation of the drag coefficient and lift coefficient predicted by these 
methods for all shot types is warranted as a future study. For instance, a kick serve with heavy spin would have 
an increase in lift coefficient that may make the ball more “livelier” in lateral directions. 
 
3. RESULTS 
 
Using the optimisations methods, Figure 2 presents an example of the data fitting between the Hawk-Eye 
trajectory and the numerically derived theoretical trajectory solution, with the very close match demonstrating 
the effectiveness of the optimisation algorithm in finding a solution to match the Hawk-Eye trajectory. 
 

 
Figure 2: Example Trajectory Fitting 

 
To examine the estimated drag coefficients in more detail, a representative Men’s Singles match was 

selected that extended to 5 sets. Throughout the match, 7 different batches of tennis balls were used, with new 
balls called for by the umpire on 6 occasions. The drag coefficient estimation method was applied to every serve 
of the match of speeds greater than 50 m/s. Segregating each of these serves to their game number of use between 
1 to 9, Figure 3 presents the drag coefficient estimate distributions. The figure indicates the trend of a progressive 
increase in drag coefficient with game number, with the highest rate of increase occurring in the earlier games. 
The variation in the drag coefficient within each game is indicative of the differing ball properties, surface 
condition and asymmetry of each ball played due to their varying accumulated use. 
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Figure 3: Drag Coefficient Variation with Game Number 

 
Reviewing these serve drag coefficient estimates as a time history (using the match rally number as the time 

scale) enables highlighting the specific trends associated with the changeover to new balls. An example of this 
is shown in Figure 4, presenting the drag coefficient estimates from every serve with speed greater than 50 m/s 
from the third set of the match. New balls were called for by the umpire in the 5th game of the set, with the 
following two games characterised by serve drag coefficients between 0.475 and 0.55, on the lower end of the 
distribution relative to the rest of the match. With these lower drag coefficients, all other things being equal (e.g. 
no racket/string changes) the ball will tend to fly further and faster due to the lower drag resistance. Hence, if 
adjusted for correctly by a player, lower ball drag coefficients can reward aggressive play as opponents will have 
less time to react. Interestingly, there was rapid degradation of the tennis balls after these 2 games. Rapid 
degradation can be the result of extended rallies or due to players playing with high shot heaviness (combination 
of speed and spin). 
 

 
Figure 4: Drag Coefficient Variation during Set 3 of Representative 5-set Men’s Singles Match 
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4. DISCUSSION 
 
The drag coefficient results derived from the representative Men’s Singles match demonstrated the step change 
reduction in drag coefficient with the changeover to new balls, as well as the gradual increase in drag coefficient 
with ball usage. This was a consistent trend across all matches that were assessed, albeit there was variance in 
the response that can be attributed to differences in ball properties and other variables such as the environment 
(temperature and humidity). 

This information when viewed across the tournament can provide useful feedback for tennis ball 
manufacturers. Ball degradation is an accepted phenomenon of the sport (hence the official rule to change the 
balls after every 9 games), however, developing balls with a consistent specification and performance is assumed 
to be a targeting trait for manufacturers to gain approval from professional tennis players. 

Professional tennis players can also use this information to adequately prepare for forthcoming matches. 
This may include developing strategies with respect to changing rackets with modified string tension to 
counteract the ball flying longer with new balls or at the very least awareness of this step-change in ball 
behaviour. From the perspective of the receiver, awareness of the reduction in reaction time may dictate court 
positioning when receiving to new balls. 

Aside from the drag coefficient, deconstructing the ball trajectory time histories into equations of motion 
also enables the estimation of other trajectory parameters, including the lift coefficient and the ball topspin and 
sidespin. The lift coefficient quantifies the influence of the Magnus Effect (sideways force) of the spinning tennis 
ball, whilst differentiating between topspin and sidespin provides a more complete description of how spin 
influences the ball trajectory. As such, decomposing a ball trajectory into trajectory equations enables a higher 
fidelity interpretation of an executed shot. The effect of a small variation in any of the trajectory variables can 
then be investigated individually. The trajectory equations can also be extrapolated to answer hypothetical 
scenarios, for example, whether a volleyed ball would have landed out. 

This paper has focused on the ball motion through the air, however, there is also the ball dynamics through 
impact with the racket and the court that could also be influenced by ball degradation (Steele, 2008). The ball 
motion into and out of the bounce as characterised by the spatiotemporal data could be used to calculate the 
ball’s coefficient of restitution and coefficient of friction with the court using bounce equations such as those 
presented (Cross, 2020). Specifically, the ball’s coefficient of restitution, the ratio of vertical velocity outbound 
and inbound of the bounce, could be investigated for evidence of association with ball degradation. 

The methods presented in this paper are dependent on the accuracy of the spatiotemporal data from which 
the trajectory solution is being attempted to replicate. The methods presented are agnostic to the spatiotemporal 
data capture technology used. However, Hawk-Eye Technologies has an established presence in professional 
tennis through their electronic line-calling and broadcast applications. Hawk-Eye have previously indicated a 
mean error of 2.6 mm for their electronic line calling technology (Hawk-Eye Innovations, 2016), however, there 
has been no published results for the accuracy of the entire Hawk-Eye ball trajectory prediction. 

Another potential source of error in the calculations is due to the assumed properties of the tennis balls. The 
manufacturer specification for the ball properties (mass and diameter) can provide a baseline assumption. 
However, there will be variation from ball to ball, and it is currently not possible to identify the exact ball used 
(and the associated properties) for every shot played in a tennis match. 
 
5. CONCLUSIONS 
 
This paper has presented a method to deconstruct ball trajectory time histories into equations of motion, with 
the focus of the study to estimate and discuss the estimated drag coefficient from match-play. However, this 
method can be equally used to extract and investigate other properties from the ball trajectory, including the lift 
coefficient and the different types of spin on the ball. Furthermore, the methods can be used for other applications 
such as trajectory extrapolation, e.g. enable prediction of whether a volleyed ball would have landed out. 

Considering fast flat serves greater than 50 m/s (180 km/h) in Men’s Singles matches from the 2022 
Australian Open, it was found that in general there was a gradual increase in the ball drag coefficient with usage, 
followed by a noticeable step change reduction in the drag coefficient at the changeover between old and new 
balls. This information can be used by tennis ball manufacturers/tournament organisers to monitor the 
degradation and consistency of tennis balls during tournament match play. Whilst tennis players/coaches can 
also use this information to adequately prepare for forthcoming matches by ensuring they have developed 
strategic plans to adjust or counteract the effect of the step change reduction in drag coefficient associated with 
new balls. 
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Abstract 
 

Electronic performance & tracking systems (EPTS) are commonly used to track the location and velocity of 

athletes in many team sports. A range of associated applications using the derived data exist, such as 

assessment of athlete characteristics, informing training design, assisting match adjudication and providing fan 

insights for broadcast. Consequently the quality of such systems is of importance to a range of stakeholders. 

The influence of both systematic and methodological factors on this resulting quality is non-trivial. 

Highlighting these allows for the user to understand their strengths and limitations in various decision-making 

processes, as well as identify areas for research and development. In this paper, a number of challenges and 

considerations relating to the determination of EPTS validity for team sport are outlined and discussed. The 

aim of this paper is to draw attention of these factors to both researchers and practitioners looking to inform 

their decision-making in the EPTS area. Addressing some of the posited considerations in future work may 

represent best practice; others may require further investigation, have multiple potential solutions or currently 

be intractable. 
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Abstract

Expected points are a measure of the quality of an attempted shot on goal. Typically, expected points 
are calculated using covariates such as field location, shot context, type of shot among other things. 
Summary statistics of expected scores can provide additional context to results, insights into general 
shot quality and a team’s overall effectiveness in front of goal. 
Recently, European Football has looked at assigning a similar metric to keepers, known as expected 
saves, however an equivalent metric has not been developed for Australian Rules Football. Firstly, 
we have developed a reproducible and publicly available expected points model for Australian Rules 
using a ‘play by play’ dataset recently released online. Secondly, we use the ‘play by play’ dataset to 
extract defender actions and their effects to derive a new metric, defensive points saved. Lastly, we 
produced interactive visual maps that allow analysts, media and fans to explore the data, providing 
visual context to analytical insights,
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